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Abstract

Autonomous repair of deep-sea coral reefs is a recent proposed idea to support the oceans
ecosystem in which is vital for commercial fishing, tourism and other species. This idea can
be operated through using many small autonomous underwater vehicles (AUVs) and swarm
intelligence techniques to locate and replace chunks of coral which have been broken off, thus
enabling re-growth and maintaining the habitat.

The aim of this project is developing machine vision algorithms to enable an underwater
robot to locate a coral reef and a chunk of coral on the seabed and prompt the robot to pick
it up. Although there is no literature on this particular problem, related work on fish counting
may give some insight into the problem. The technical challenges are principally due to the
potential lack of clarity of the water and platform stabilization as well as spurious artifacts
(rocks, fish, and crabs).

We present an efficient sparse classification for coral species using supervised deep learning
method called Convolutional Neural Networks (CNNs). We compute Weber Local Descrip-
tor (WLD), Phase Congruency (PC), and Zero Component Analysis (ZCA) Whitening to ex-
tract shape and texture feature descriptors, which are employed to be supplementary channels
(feature-based maps) besides basic spatial color channels (spatial-based maps) of coral input
image, we also experiment state-of-art preprocessing underwater algorithms for image enhance-
ment and color normalization and color conversion adjustment.

Our proposed coral classification method is developed under MATLAB platform, and eval-
uated by two different coral datasets (University of California San Diego’s Moorea Labeled
Corals, and Heriot-Watt University’s Atlantic Deep Sea).

We are part of a living world, not apart from it

Sylvia Earle
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Chapter 1

Introduction

This chapter presents a basic background about coral species, thesis contribution to classify

coral images through deep learning methods, and finally thesis outline for next chapters.

1.1 Background

Coral reefs are living organisms consisting of very small animals called “polyps”’, and exist

in more than 200 countries’ aquatic spaces (seas and oceans) where sea temperatures range

between 25 and 290 Celsius (as shown in figure 1.1). They provide a main livelihood source

for around 30 million people through (food in fisheries, income in tourism and materials in

pharmaceuticals, and coastal protection of habitation and farmland in erosion and storms).

World’s largest coral reef system is Great Barrier Reef [10] in the north-east coast of Australia

(please see figure 1.2) spreading on thousands of coastal kilometers and hundreds of islands,

and it contains around three thousands individual coral reefs [11] and represents world’s biggest

single structure made by living organisms which can be seen from outer-space.

Hundreds of different species of corals exist around the world, in which are generally classified

into hard and soft corals [12]. Hard corals grow in colonies to build huge reef blocks. Seawater

provide calcium to corals in order to build their skeletons. The living corals represents a very

small part of the overall reef structure. Soft corals construct plants or trees and do not have

stony skeletons. Soft corals can be found in different aquatic regions (tropical shallow sea and

cold deep sea).

As the number of images and databases continues to rapidly increase at many environmental

research centers and aquatic-based agencies (i.e. International Coral Reef Action Network, and

National Oceanic & Atmospheric Administration) due to latest technologies in image acquisition

using different autonomous underwater vehicles. Coral ecologists and environmental scientists

1

Sparse Coral Classification Using Deep Convolutional Neural Networks
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Figure 1.1: Distribution of Coral Reefs around the world (Copyright
Friedrich Von Steuben Metropolitan Science Center)

Figure 1.2: Great Barrier Reef, Australia (Copyright Zicasso)

Sparse Coral Classification Using Deep Convolutional Neural Networks

o· o· 

60' 



3 1.2 Contribution

already collected millions of coral images and thousands of hours of underwater videos, and they

need massive number of hours to annotate every pixel inside each coral image or video frame

such that this full manual segmentation will be time consuming and increase the ratio between

labeled and unlabeled images across time. Uniform random point sampling is a sufficient

solution for coral research statistics using image annotation software (i.e. Coral Point Count [13]

by National Coral Reef Institute). In this software, images are manually annotated through

coral experts by selecting some random pixels (10-200) in the target image, and classifying

those pixels respect to predefined coral classes. A typical survey states [14] that more than 400

hours are required to annotate 1000 images (around 200,000 coral labeled points). Automated

image analysis is rapidly emerging as a promising cost-effective tool to annotate images for e.g.,

coral cover, health and species composition in both shallow and deep coral reef settings.

1.2 Contribution

An efficient sparse classification for coral species is introduced using most recent machine learn-

ing technique “Deep Learning” which is a set of algorithms [15] that attempts to model high-level

abstractions in data by using architectures composed of multiple non-linear transformations.

Toronto’s Hinton [16], Montreal’s Bengio [17], and New York’s LeCun [18] pioneer deep learning

idea to be a new generation of artificial neural networks to allow machines to learn recognizing

patterns in everything from audio/visual data [19–21] to spoken language [22] to handwrit-

ing [23].

Two most-popular algorithms are Convolutional Neural Network (CNN) and Deep Belief Net

(DBN). first is a special kind of multi-layer feed-forward supervised neural network which is

designed to recognize visual objects directly from spatial-based images with minimal or without

preprocessing, it consists of three layers: (1) feature extraction (convolution layer), (2) shift

and distortion invariance (sub-sampling layer), (3) classification (output layer). later [24] is an

unsupervised probabilistic generative models composed of multiple layers of stochastic, hidden

variables. The top layers have undirected, symmetric connections between them and the lower

layer receives directed connections from the layer above.

1.3 Thesis Outline

Thesis is divided in 5 chapters: Introduction, Problem Definition, State of the Art, Methodol-

ogy, Results and Conclusions. In chapter 2, it presents the coral threats and survival solutions.

In chapter 3, it discusses the related research in coral detection, and introduces recent supervised

machine learning algorithm in deep learning (convolutional neural networks) & its applications

Sparse Coral Classification Using Deep Convolutional Neural Networks



Chapter 1: Introduction 4

in object classification and recognition. In chapter 4, it shows overview of the proposed coral

classification method and explains in details each phase. In chapter 5, it evaluates the pro-

posed method’s results in qualitative and quantitative way. Finally in chapter 6, it summarizes

conclusions, method’s limitations, and future work.

Sparse Coral Classification Using Deep Convolutional Neural Networks



Chapter 2

Problem Definition

This chapter presents importance of coral reefs, its main threads due to human and environ-

mental effects, finally manual and automatic transplantation process as survival coral solutions.

2.1 Introduction

Coral reef ecosystems provide for over half a million people: they create substantial socioeco-

nomic benefits from tourism and fisheries while providing coastal protection, enhancing biodi-

versity and contributing to carbon sequestration that mitigates global warming [25,26]. Global

conservation of reefs and their resources in a world characterized by multiple stressors and dis-

turbances will require unified efforts to create international marine and climate policies alongside

local adaptive community management tools [27]. However these policies and tools must also

be cost-effective and promote public and stakeholder stewardship of coral reefs [28].

2.2 Main Threats

Based on mid-90’s statistics [12], 10% of coral reefs were destroyed and can’t be recovered

again, and there are only less than 30% healthy coral reefs around the world. Figure 2.1 shows

human activities that threaten the coral reefs around the world starting from Caribbean coast

of Atlantic ocean as presented in figure 2.2(a,b); passing through east Africa coast & Red sea;

ending to central part of Pacific ocean, those activities involve coastal development (sun blocking

from eroding soil over aquatic world), underwater pollution (oil, gas, and mineral exploration

& extraction), destructive fishing methods (very popular in south Pacific and southeast Asia

using poison fishing and dynamite fishing), and unsustainable tourism (i.e. touching during

5
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Chapter 2: Problem Definition 6

Figure 2.1: Threads to Coral Reefs [1]

diving sessions), such that they damage both cold deep and warm shallow coral physically and

don’t allow them to grow again or recover in decades [1, 11].

There two more major coral environmental-based threads [29]: (coral bleaching, and ocean

acidification). 16% of the world’s coral reefs is suffered from first thread over the last three

decades due to increase in water temperature which causes losing coral color and become white

as shown in figure 2.2(c), but corals can recover from bleaching. Unstable balance in atmospheric

materials (i.e. increased carbon dioxide) leads to later threat which causes lowering of ocean pH

(acidity measure) and affect coral negatively by losing their calcium selections. There two more

major coral environmental-based threads: coral bleaching, and ocean acidification. 16% of the

world’s coral reefs is suffered from first thread over the last three decades due to increase in

water temperature which causes losing coral color and become white as shown in figure 2.2(c),

Sparse Coral Classification Using Deep Convolutional Neural Networks
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7 2.2 Main Threats

Figure 2.2: Examples of coral reef decay: (a) Coral Elkhorn in the
Caribbean sea (1975-1995) [2], (b) Carysfort reef in the Florida
Keys (1975-2004) [3], (c) Bleaching of 500 years old coral head

(1996-1997) [4]
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but corals can recover from bleaching. Unstable balance in atmospheric materials (i.e. increased

carbon dioxide) leads to later threat which causes lowering of ocean pH (acidity measure) and

affects coral negatively by losing their calcium selections.

2.3 Coral Transplantation

Some types of coral reef have a slow survival ability for recovering or re-growth using small

healthy coral wreckage resulting their artificial coral colony after some decades. Possible strate-

gies are provided for coral gardening through involvement of SCUBA divers in coral reef re-

assemble and transplantation. Although, some limitations (restricted time and depth per diving

session respect to human abilities) are introduced a small survival rate in transplanted corals

(especially cold sea corals due to their deep depth conditions). Coral ecologists investigate new

robot-based strategy in deep-sea coral restoration in such that autonomous underwater vehicles

(AUVs) grasp cold-water coral samples and replant them in damaged reef areas. Successful

transplantation trail [30] is already occurred in 2008 for cold-water coral Lophelia (at 82m

water depth) in Kosterfjord, Sweden.

Figure 2.3 shows two examples of human-based transplantation for coral reef fragments.

problem of first example start in 1998 when increase in ocean temperature due to storms cause

coral bleaching and lose 90% of shallow corals. World-known resort (Four Seasons) and environ-

mental consultancy agency (Seamarc) started a coral-saving project entitled (Reefscapers) in

2001 to transplant coral fragments to artificial coral reefs and monitor their growth over years;

leading to amazing results (20% coral increase, 80% survival rate for transplanted corals). global

warming caused second example 80% coral death at Koh Tao (Thailand) in 2010, so that an

environmental organization (Save Coral Reefs) begin a coral restoration project resulting a

tremendous coral growth after one year of operation.

2.4 Autonomous Underwater Vehicles

Although deployment of single AUV operation is time limited. Inspired from behavioral of

natural swarms of insects (bees, wasps and termites) in building complex colonies, team of

marine biologists and robotics experts introduced an innovative underwater project ’coralbots’

to speed-up the regenerated coral process using intelligent swarms of inter-connected AUVs.

Proposed work (as shown in figure 2.4) consists of two stages: offline data training and on-

line identification. offline training will be on surface workstation for fast computation and long

execution time which extracts features from coral-labeled images besides spatial information

and then apply deep learning process (supervised, unsupervised, or hybrid) to get well-trained

Sparse Coral Classification Using Deep Convolutional Neural Networks



9 2.4 Autonomous Underwater Vehicles

Figure 2.3: Examples of coral reef transplantation: (a) Reviving
coral reefs in the Maldives (Reefscapers Project 2001) [5], (b)

Rehabilitationof coral reefs in Koh Tao island, Thailand (Save Coral
Reefs 2012) [6]

Sparse Coral Classification Using Deep Convolutional Neural Networks
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Figure 2.4: Retransplantation process of autonomous underwater robots (AUVs) for coral reefs

parameters for further successful classification. However, online identification will be on re-

motely operated underwater vehicle (ROV) which collect images from several AUVs and find

out which species are included, and detect their coordinates in real-time processing for further

coral transplantation.

Sparse Coral Classification Using Deep Convolutional Neural Networks



Chapter 3

State of the art

This chapter discusses most-recent research in classification for coral species using optical cam-

era sensors, then explains convolutional neural networks (deep learning method) as a feature

extraction and classification technique and its successful applications in related research (object

classification, and object recognition & detection).

3.1 Coral Classification

Clement et al. [31] presented local binary pattern (LBP) as feature descriptor for binary detec-

tion of crown-of-thorns starfish (COTS) from great barrier reef images in Australia, in which

his experiments achieved an above-average results in only one-class segmentation. Mehta et

al. [32] used support vector machines (SVM) classifier directly on spatial information of coral

image without any preprocessing step to get a binary (coral/non-coral) output, he reasoned for

using raw-data as classifier input such that features and descriptors for coral textures are very

difficult to obtain. he achieved 95 % correct classification but his method behaves negatively

with any change in underwater illumination.

Pizarro et al. [33] introduced object recognition for coarse habitat classification (1st ex-

periment; 8 classes: coralline rubble, hard coral, hard coral +soft coral + coralline rubble,

halimeda + hard Coral + coralline rubble, macroalgae, rhodolith, sponges, and un-colonized)

(2nd experiment; 4 classes: reef + coarse sand, coarse sand, reef, and fine sand), he employed

the same color features of Marcos but different texture features based on bag-of-words using

scale-invariant feature transform (SIFT) with extra saliency feature of gabor-filter response,

this method can be only used with single-object images (one classes per entire image) [34].

Marcos et al. [35] developed an automated rapid classification (5 classes: coral, sand, rubble,

dead coral, and dead coral with algae) for underwater reef video, he used color features based

11
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Chapter 3: State of the art 12

on histogram of normalized chromaticity coordinates (NCC) and texture features from local

binary patterns (LBP) descriptor, those features feed into linear discriminant analysis (LDA)

classifier. in case of using more classes [34], his method output inaccurate classification.

Johnson-Roberson et al. [36] showed an approach for the autonomous segmentation and

classification of coral through the combination of visual and acoustic data, which generates 60

visual features: 12 are the mean and standard deviation of all of the RGB and HSV channels

separately and the remaining 48 are obtained by convolving the region with Gabor wavelets

at six scales and four orientations and taking the mean and standard deviation of the results

for each scale and orientation combination, then SVM is selected for classification task, pre-

processing is mainly required to allocate foreground regions before feature extraction. Purser

et al. [37] investigated machine-learning algorithms for the automated detection of cold-water

coral habitats, which computes 15 differently oriented and spaced gratings in order to produce

a set of 30 texture features, and to compare a computer vision system with the use of three

manual methods: 15-point quadrat, 100-point quadrat and frame mapping. Strokes & Deane

[38] described an automated algorithm for the classification of coral reef benthic organisms

and substrates which divides image into blocks, then finds distance between those blocks and

identifies species blocks based on color features (normalized histogram of RGB color space) and

texture features (radial samples of 2D discrete cosine transform) by using inconvenient distance

metric (manually assigned parameters) after unsuccessful results of well-known mahalanobis

distance.

Beijbom et al. [14] introduced Moorea Labeled Corals (MLC) dataset and proposed multi-

scale classification algorithm for automatic annotation, he developed color stretching for each

channel individually in L*a*b* color space as pre-processing step, then used Maximum Response

(MR) filter bank approach (rotation invariant) as color and texture feature, followed by applying

Radial Basis Function kernel (RBF) of Support Vector Machines (SVM) classifier, this method

seek all possibilities (time-consuming) to find a suitable patch size around selected image points

for species identification.

Schoening et al. [39] introduced semi-automated detection system for deep-sea coral images,

in which firstly applies preprocessing step for illumination correction, then secondly extracts

high dimensional features at labeled pixels based on MPEG7 standard (four descriptors for color

features; three for texture; ten for structure and motion), after that a set of successive different

support vector machines is applied a long side with thresholding post processing, although the

used features are more generic for any application leading to high sensitivity for underwater

cluttering background. Stough [40] presented an automatic binary segmentation technique of

live Staghorn coral species, in which regional intensity quantile functions (QF) is used as color

features and Scale-Invariant Feature Transform (SIFT) is maintained to be texture features,

followed by linear SVM as classifier, this supervised technique is highly noise sensitive (due to

Sparse Coral Classification Using Deep Convolutional Neural Networks



13 3.1 Coral Classification

Table 3.1: Summary of related methods for coral image classification

SIFT).

Shihavuddin et al. [34] implemented hybrid variable-scheme classification framework for

benthic coral reef images or mosaics, this framework uses combination of the following features

(local binary pattern (CLBP), grey level co-occurrence matrix (GLCM), Gabor filter response,

and opponent angle and hue channel color histograms) and also combination of the following

classifiers (k- nearest neighbor (KNN), neural network (NN), support vector machine (SVM) or

probability density weighted mean distance (PDWMD)) along besides middleware procedures

for better result enhancement, but this framework works sufficiently with small-patched images

(high negative impact of background information).

Rather than depending on human-crafted features (please see table 3.1) to get a proper coral

classification, the proposed work decides letting the feature mapping to be done automatically

by deep convolutional neural networks regardless to any under-water environment condition.

by feeding new images, the network can learn and adapt the constructed feature maps respect

to desired class outputs.
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Figure 3.1: Difference between shallow traditional and deep modern
classification architectures

3.2 Convolutional Neural Networks

Traditional architecture firstly extracts hand-designed key features based on human analysis for

input data, secondly applies those features in form of data vectors to generic classifier in order

to get predicted target classes (in other words, classifier is totally dependent on how features

constructed not input data). Deep architecture trains learning features across hidden layers;

starting from low level details (i.e. edges, corners) up to high level details (i.e. shape, texture);

to get better data representation for simple classifier (please see figure 3.1 for graphical details).

A convolutional neural network (CNN) [41–43] is a type of feed-forward back-propagation

neural networks respect to biological-based visual processes. it consists of trainable multiple

convolutional stages [44], in which input and output of each stage are variant representation

of one/multi-dimensional array (i.e. 1D for audio, 2D for image, 3D for video, ...), the output

array learn to extract high-receptive features from all sides of input one. A typical CNN is

composed of two or three stages, followed by a classification layer. LeCun presented first back-

Sparse Coral Classification Using Deep Convolutional Neural Networks

Human-Crafted 
Feature 

Extraction .. Generic 
Classifier 

(i.e.SVM, ... ) 

Traditional Shallow Classification • • • • ------------------------
Modern Deep Classification 



15 3.2 Convolutional Neural Networks

Figure 3.2: Architecture of LeNet-5 (Convolutional Neural
Networks) for digit recognition, from LeCun [7]

propagation CNN entitled ”LeNet-5” (please see figure 3.2) for handwritten digit recognition,

which is a large network which contains 6 layer hidden layers whose its input is 28x28 input

image of single hand-written character and its output is multi-invariant feature map of input

character.

Each hidden stage/layer consists of four steps (as shown in figure 3.3) : trainable convolution,

non-linearity activation, contrast normalization, and pooling/sub-sampling. Convolution filters

an input map into translation-invariant maps with different trainable weights and biases, Non-

linear activation function (i.e. hyperbolic, sigmoid, . . . ) adds independent relationship within

objects inside, contrast normalization keeps output maps in pre-defined range measures, final

feature map is subsampled or max-pooled from output maps of the last stage (make it small in

size to further faster calculation in next layers).
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Figure 3.3: Main structure of CNN hidden layer

3.2.1 Object Classification

Buyssens [45] introduced multi-scale convolutional neural networks (MCNN) for cancer cell im-

age classification, in which cells are detected and segmented from virtual slides, then they are

classified by using different CNNs at each scale and finally fuse their outputs through linear

combination to get six different types of cancer cells. activation function used at convolution

layer is non-linear squashing function, output of max-pooling layer is calculated in selecting re-

gions of maximum activation instead of averaging regions (classical way). This method achieved

lower error rate (5.74%) than state-of-art approaches after 50 epochs with four different square

scales (80, 56, 40, 28).

Krizhevsky [46] presented a large deep convolutional neural network with eight hidden layers

to achieve state-of-art results (1.5 million images of 256x256 down-sampled size) classification

contest (LSVRC2010, LSVRC2012 of 37.5% and 36.7% error rates respectively with one thou-

sand different classes), in which second best result from other participants has at least 10%

error rate than proposed work. Such kind of large network faced over fitting over huge number

of epochs which can be solvable by (1) introducing new transformed data from original data

(2) dropping out neutral hidden neurons.

Sparse Coral Classification Using Deep Convolutional Neural Networks

.. Hidden 
Layer .. 
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Figure 3.4: Overview for object detection using Regions with CNN features (R-CNN [8])

3.2.2 Object Recognition and Detection

Girshick [8] constructed innovated object detection (as shown in figure 3.4) with state-of-art per-

formance (mean average precision = 53.3%) on PASCAL Visual Object Classes Challenge 2012

over complex methods of different combination of low level features. He used selective search

for extraction of candidate regions and proposed region-based convolutional neural networks

to classify the target objects using supervised training and detect them using domain-specific

fine-tuning process. Syafeeza [47] proposed a face recognition system using convolutional neu-

ral network with over 85% accuracy in two different datasets. non-linear data representations

(changes in illumination and poses) are overcome by experimenting variant network adjustment

(fusion architecture, 10-fold cross validation, partial inter-layer connection, hyperbolic tangent

activation function, input data normalization, and Gaussian weight normalization).

Pinheiro [48] used recurrent-based convolutional neural networks to successfully label each

pixel of input images in the following datasets: Stanford background (80.2% accuracy, 715

images, 8 classes, 320x240 pixels) and SIFT flow dataset (77.7% accuracy, 2688 images, 3

classes, 256x256 pixels). These results exceed state-of-art ones in both datasets with efficient

computation time. Saidane [9] showed a robust recognition algorithm (as shown in figure 3.5) for

color text characters against different types of noises (high-detailed background, non-uniform

lighting, etc. . . ). recognition rate 84.5% is achieved with 36 classes (26 alphabetic letters and

10 numerical digits) using ICVDAR 2003 database.
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Figure 3.5: Network architecture for text recognition [9]
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Chapter 4

Methodology

This chapter presents mains steps of coral classification based on convolutional neural networks,

and overview & implementation details of proposed classification framework to match coral

image points to target coral classes.

4.1 Introduction

Coral-reef classification can be divided into three main consecutive steps:

1. Under-water image de-noising (preprocessing step): due to different challenges (motion

blurring, color attenuation, refracted sunlight patterns, water temperature variation, sky

color variation, scattering effects, presence of sea particles, etc...), raw image must be

enhanced visually to show its coral species in details for further steps.

2. Feature extraction: image which contains different coral species, have to find salient

regions in each object in order to identify and distinguish those species easily respect

to invariance of the following aspects (illumination, rotation, size, view angle, camera

distance, etc...).

3. Machine Learning (ML) algorithm: those extracted features are used as input for machine

learning to find suitable parameters to converge species of new images to similar trained

ones respectively.

The proposed framework implemented the first step of coral reef classification (under-water

image de-noising) using state-of-art research in underwater color enhancement and some addi-

tional data adjustment (hybrid sized patching) due to point-based data representation, and also

achieved the second and third steps together using convolutional neural networks (deep learning

19
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Figure 4.1: Architecture overview of proposed CNN

method) along side with construction of salient feature maps for faster network convergence

based on most recent techniques in computer vision.

4.2 Framework Overview

The proposed classification framework (as shown in figure 4.1) contains three main levels (input

layer, hidden layers, output layer). Input layer consists of three basic channels of color image

plus extra channels for texture and shape descriptors consisting of following components: zero

component analysis whitening, phase congruency, and Weber local descriptor (as shown in

figures 4.2, 4.3), and preprocessing step (color correction/enhancement, smoothing filter) can

be applied for further classification improvement. Hidden layers contains one or more layer(s)

[usually 2 or 3] in which each layer consists of convolution layer followed by down-sampling layer

in such way that the network can find suitable weights of convolutional kernel and additive

Sparse Coral Classification Using Deep Convolutional Neural Networks
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Figure 4.2: Example of feature maps for Crinoid coral using ADS
dataset

biases. Almost first layer represents feature extraction by finding visual strokes, edges, and

corners, and up-coming layers starting from second layer show how those features can combine

in different aspects to get a discriminative output map for each target class. Output layer acts

as a classification layer and symbolize reconstructed maps from last hidden layer into binary

vector (placement of number one in specific element corresponding to desired class and number

zero in the rest).

Sparse Coral Classification Using Deep Convolutional Neural Networks
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Figure 4.3: Example of feature maps for Acropora coral using MLC
dataset
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4.3 Implementation

4.3.1 Preprocessing

Color Enhancement

Bazeille [49] discussed difficulties in capturing good quality under-water images due to non-

uniform lighting and underwater perturbation, he introduced a large parameter-free algorithm

consisting of applying set of different filters into noisy underwater images which enhances edges

and visual quality robustly. Iqbal [50] addressed under-water lighting problems due to light

absorption, vertical polarization, and sea structure in which short wavelength of blue leads it

to penetrate into sea layers and be a dominant color in deep water, he presents a simple slide

color stretching algorithm based on RGB and HSI color models that is efficient equalization for

color contrast. Beijbom [14] stated compensation of color differences in underwater turbidity

and illumination can be solved by simply stretching histogram of each color channel separately

with respect to 1% and 99% intensities.

Figure 4.4 presents state of art coral processing for color enhancement and its application on

un-cleared coral image from MLC dataset, in which bazeille work shows edge-based version with

less-coloring objects, Iqbal presents well-cleared version for foreground objects, and beijbom

presents same output of Iqbal but with more reddish color on corals (as shown in left side of

image).

Hybrid Patching

Three different-in-size patches are selected across each annotated point (61x61, 121x121, 181x181),

then unified size scaling step is applied to those patches by scaling them up to size of the largest

patch (181x181) allowing pixel randomization (blurring) in inter-shape coral details and keeping

up corals edges and corners (please see figure 4.5), or scaling them down to size of the small-

est patch (61x61) for fast classification computation over small data representation of different

scaling selections.

4.3.2 Feature Maps

Zero Component Analysis Whitening

Zero Component Analysis (ZCA) whitening [51–54] makes data less-redundant by removing

any neighboring correlations in adjacent pixels in such that output data removes amplitude

information and keeps recognizable edges. it stimulates image scanning retinal process which

decorrelates similar intensity values of contiguous pixels (high correlated adjacent pixels) af-

ter few moments of eye-focusing. It requires one smoothing parameter (very small number)

Sparse Coral Classification Using Deep Convolutional Neural Networks
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Figure 4.4: Example of color enhancement for coral images
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Figure 4.5: Example of hybrid patching

preventing division of zero in its calculation with respect to tiny eigenvalues which leads to a

better-visual output features (dispatching off the inter-process aliasing artificats).

Figure 4.6 shows how image data are correlated before and after ZCA whitening (covariance

matrix represents correlation between image rows, in which diagonal white value represents

full correlations of rows with itself and semi-correlated with rows with other rows). Before

ZCA whitening, high correlation is found in covariance of grayscale version between adjacent

rows (white blobs across main diagonal) and less correlation between faraway rows (black blobs

across cross diagonal). After ZCA whitening, output image is polished by discarding inter-coral

details and focusing on external shape of coral, wherefore homogenous correlation between

non-duplicating rows exists in its covariance (everywhere except main diagonal).

Weber Local Descriptor

Weber Local Descriptor (WLD) [55] is inspired from psychological law in 19th century “Weber’s

Law” and represents human perception of a pattern depending on ratio between change in

image pixel and original pixel value. it consists of two components: differential excitation

and orientation. The differential excitation component computes the salient micro-patterns

relative to nearby neighboring pixels by calculating a function of the ratio between ratio between

the relative intensity differences of a current pixel against its neighbors and the intensity of

the current pixel. The orientation component constructs statistics on the computed salient

patterns along with the gradient orientation of current pixel by building histograms of dominant

Sparse Coral Classification Using Deep Convolutional Neural Networks
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Figure 4.6: Two examples of ZCA whitening using MLC and ADS dataset
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orientations. This method shows a robust edge representation of high-texture images against

high-noisy changes in illumination of image environment. WLD has proven promising results

in different object recognition issues [56–58].

Phase Congruency

Phase Congruency (PC) [59,60] represents image features in such format which should be high

in information and low in redundancy using Fourier transform, rather than set of edges (sharp

changes in intensity). in other words, Phase Congruency [61] is a dimensionless measure for

the of a image structure independently of the signal amplitude which is based on Kovesi’s work

[62]. Those features are better than gradient-based features which are fully invariant to image

illumination and contrast, and also partially invariant to scale and rotation transformation in

case of application of suitable normalization process in frequency domain [63].

4.3.3 Image Normalization

There are two different methods for image normalization [64] (see figure 4.7): linear contrast

(min-max) normalization and z-score normalization. it keeps input image within same range

as preprocessing step to speed up the network training time.

Z-score normalization (statistical normalization) uses the mean and standard deviation of

each input image to normalize its values using linear transformation in order to reduce the

effect of outliers (peaky noises) inside input images.

y =

[
(x− x̄)

s

]
. (4.1)

where x̄ and s are the mean and standard deviation of the input image x to get an output

image y with zero mean and an unit variance.

Min-max normalization (linear contrast normalization) rescales the range of each input

image into an unit range [0,1] or a small symmetric range [-1,+1] using linear interpolation

formula in order to keep all input images in same scale and allow neural network determining

important image features without changing the relationship between image pixels.

y = (maxo −mino) ∗
[

(x−mini)

(maxi −mini)

]
+ mino. (4.2)

where mini & maxi are minimum and maximum values of input x range, and mino & maxo

are minimum and maximum values of output y range.
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Figure 4.7: Examples of image normalization (image, histogram):
(a) gray-scale version of original image, (b) min-max normalization
[-1,+1], (c) min-max normalization [0,1], (d) z-score normalization
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4.3.4 Network Architecture

Kernel weights & bias initialization

The network [7] initialized biases to zero, and kernel weights using uniform random distribution

using the following range:

rng = ±
√

6/(fin + fout).

fin = Nin ∗K2.

fout = Nout ∗K2.

(4.3)

where Nin and Nout represent number of input and output maps for each hidden layer (i.e.

number of input map for layer 1 is 1 as gray-scale image or 3 as color image), and k symbolizes

size of convolution kernel for each hidden layer.

Convolution layer

Convolution layer construct output maps by convoluting trainable kernel over input maps to

extract/combine features for better network behavior using the following equation:

xlj = f(
∑
iεmj

[
xi
l−1 ∗ klij + blj

]
). (4.4)

where xi
l−1 & xlj are output maps of previous l − 1 & current l layers with convolution kernel

numbers (input i and output j) with weight klij , f(.) is activation function for calculated maps

after summation, and blj is addition bias of current layer l with output convolution kernel

number j.

Down-sampling layer

The functionality of down-sampling layer is dimensional reduction for feature maps through

network’s layers starting from input image ending to sufficient small feature representation

leading to fast network computation in matrix calculation, which uses the following equation:

ylj = hn(wl ∗ xlj). (4.5)

where hn is non-overlapping averaging function with size nxn with neighborhood weights w

and applied on convoluted map x of kernel number j at layer l to get less-dimensional output

map y of kernel number j at layer l (i.e. 64x64 input map will be reduced using n=2 to 32x32

output map).

Sparse Coral Classification Using Deep Convolutional Neural Networks
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Activation function

The logistic (sigmoid) function which is the most common activation function for classical neural

networks and very useful in gradient decent training due to existence of function’s derivatives.

the function’s equation is as follows:

f(x) =
1

1 + e−βx
; [−∞,+∞]⇒ [0, 1]. (4.6)

where input x can be infinite value, and output f(x) will be in bounded range [0,1].

Learning rate

Inspired from Lawrence’s convergence learning rate in CNN application for face recognition [65],

an adapt learning rate is used rather than a constant one with respect to network’s status and

performance as follows:

αn = g(
αn−1

[n/ (N/2)] + 1
+ en). (4.7)

where αn & αn−1 are learning rates of current & previous iterations (if first network iteration is

the current one, then learning rate of previous network iteration represents initial learning rate

as network input), n & N are number of current network iteration & total number of iterations,

en is back-propagated error of current network iteration, and g(.) is linear limitation function

to keep value of learning rate in range (0, 1].

Error back-propagation

The network is back-propagated with squared-error loss function as follows:

En =
1

2

N∑
n=1

C∑
k=1

(tnk − ynk )2. (4.8)

where N & C are number of training samples & output classes, and t & y are target & actual

outputs

4.4 Summary

This chapter showed the proposed framework for coral reef classification using deep learning

and explained in details how implementation process from color enhancement and data adjust-

ment as preprocessing step to feature extraction and classification using convolutional neural

networks.
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Results

This chapter shows the results of sparse classification with hybrid patching around annotated

points using convolutional neural networks initially referring to Palm’s toolbox for deep learn-

ing [44], in which it discusses introduction of new coral dataset ADS besides an existed dataset

MLC from University of California San Diego, explanation of used evaluation metrics, exper-

imental and final results for best configuration selection, and finally output representation of

the proposed method with respect to selected configuration.

5.1 Datasets

5.1.1 Moorea Labeled Corals

University of California, San Diego (UCSD)’s Moorea labeled corals “MLC” [14] dataset is

captured from the island of Moorea in French Polynesia in which point-based annotations are

provided (200 points per image) in around two-thousand images categorized in three different

years (2008,2009,2010). The concerned labels form 9 coral/non-coral classes (as shown in fig-

ure 5.1), These classes are classified into 5 coral classes (Acropora “Acrop” , Pavona “Pavon” ,

Montipora “Monti” , Pocillopora “Pocill” , and Porites “Porit”) and 4 non-coral classes (Crus-

tose Coralline Algae “CCA” , Turf algae “Turf” , Macroalgae “Macro” , and Sand “Sand”).

5.1.2 Atlantic Deep Sea

Heriot-Watt University (HWU)’s Atlantic Deep Sea (ADS) dataset [66] represents cold-water

coral reefs from north Atlantic west of Scotland and Ireland in 2012 at Depth (100-800) meters.

around 50 images are expertly annotated (200 labeled points per image) clarifying different

31
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Figure 5.1: Sample images from UCSD’s MLC dataset

Figure 5.2: Sample images from HWU’s ADS dataset

types of Lophelia coral habitats and the surrounding soft sediment Logachev mounds (Rockall

Trough). The target nine classes are classified (as shown in figure 5.2) into 5 coral classes

(DEAD “Dead Coral” , ENCW “Encrusting White Sponge” , LEIO “Leiopathes Species” ,

LOPH “Lophelia” , and RUB “Rubble Coral”) and 4 non-coral classes (BLD “Boulder” , DRK

“Darkness” , GRAV “Gravel” , and Sand “Sand”).

5.2 Evaluation Metrics

There are many popular assessment methods for quantitative measures in classification prob-

lems. The statistics of confusion matrix (contingency matrix) [67] is general quantitative repre-

sentation of relationship between target classes and algorithm output classes, resulting of some

important accuracy quantities (overall accuracy “OA”, precision, recall, sensitivity, specificity,
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(a) MLC dataset (b) ADS dataset

Figure 5.3: Color enhancement comparison

and F-score). training and test errors are also used to validate classification performance over

different selection of network parameters.

5.3 Experimental Results

5.3.1 Network parameters

Finding best network architecture and validating its performance needs to compare quantita-

tive results with keeping the rest network parameters constant (size of hybrid input image =

181x181, number of output classes = 9, number of samples per class = 300, number of input

channels = 3 as RGB image, normalization method = min-max with in range [-1,+1], initial

learning rate = 1, network batch size = 3, number of network epochs = 10, number of hidden

output maps = 6-12, and ratio of training/test sets = 2:1).

5.3.2 Color enhancement

Figure 5.3a shows in MLC dataset that Bazeille’06 is the best color enhancement algorithm

in classification results (around 10% improvement in all quantities: training error, test error,

and overall accuracy) over other algorithms (Iqbal’07, Beijbom’12). Although raw image data

without any enhancement is the best preprocessing choice for network classification within more

than 10% value difference from nearest enhancement algorithm. Figure 5.3b using ADS dataset

confirms the stated results in MLC dataset, but with small difference in values.
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(a) MLC dataset (b) ADS dataset

Figure 5.4: Patch selection comparison

5.3.3 Hybrid patching

Figure 5.4a using MLC dataset presents less error rates in unified-scaling multi-size image

patches over single-sized image patches,and up-scaling in multi-size image patches have the

best comparison results across different measurements (least training and test errors and highest

overall accuracy value) with small difference in overall accuracy value 2% from hybrid down-

scaling. Due to insufficient number of patch samples, ADS dataset in figure 5.4b does only

hybrid comparison only, and it states the opposite results saying that hybrid down-scaling has

the better performance against hybrid up-scaling with the same difference in accuracy value of

MLC dataset. Bi-cubic interpolation is used in hybrid patching (built-in MATLAB function

“imresize”). For a larger image size, classification performance has opposite proportion with

computation time in most cases. Hybrid down-scaling (61) is finally selected for large-scale

experiments.

5.3.4 Feature maps

Figure 5.5 indicates that additional feature-based channel besides basic color channels will be

useful in coral discrimination in both datasets (MLC,ADS). Such that combination of three

feature-based maps has slightly better classification results (1% difference in overall accuracy)

in both datasets over basic color channels without any additional supplementary channels.

More large-scale experiments are needed to decide in more discriminative way if additional

feature-based channels will improve classification performance or not.

5.3.5 Image normalization

in MLC & ADS datasets in figure 5.6, z-score normalization has very bad classification results

in comparing with min-max normalization such that changing data to be zero-mean values

and unit-variance affects negatively in classification process. Applying more range in min-max
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(a) MLC dataset (b) ADS dataset

Figure 5.5: Feature maps comparison

(a) MLC dataset (b) ADS dataset

Figure 5.6: Normalization methods comparison

normalization has very positive classification impact, in such that min-max with range [-1,+1]

will be selected for further large-scale experiments.

5.3.6 Hidden output maps

As seen in figure 5.7, using outrageous number (24-48) of hidden output maps makes classifica-

tion algorithm behaving inappropriately leading to converge all input data to only one output

class. The presented classification results can’t indicates the most suitable number for hidden

output maps between (6-12) and (12-24).

5.3.7 Summary

After experimenting different classification configurations, down-scaled hybrid RGB input image

are normalized using min-min method with range [-1,+1] and selected with additional optional

feature-based maps as input data for convolutional neural networks with one of two different
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(a) MLC dataset (b) ADS dataset

Figure 5.7: Capacity comparison of hidden output maps

(a) MLC dataset (b) ADS dataset

Figure 5.8: Comparison of network architecture

number of hidden output maps (6-12 or 12-24).

5.4 Final Results

In large-scale experiments (50 epochs rather than 10 epochs), testing phase of MLC dataset

has almost the same results as shown in figure 5.8a, but training phase starts converging to

correct target classes by increasing number of hidden output maps (12-24) and using additional

feature-based maps as supplementary channels. Using ADS dataset in figure 5.8b, testing phase

has best significant accuracy results with same selected configuration for MLC dataset.

Sub-figures 5.9a, 5.9b represent confusion matrices for MLC and ADS dataset, in which rows

& columns represent the assignments of target classes & predicted output classes respectively.

In MLC dataset, the highest classification rates are for Acrop (coral) and Sand (non-coral), and

the lowest classification rates are for Pavon (coral) and Turf (non-coral), where misclassification

occurred outputting Pavon as Monti/Macro and Turf as Macro/CCA/Sand due to similarity in
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their shape properties or growth environment. However in ADS dataset, non-corals has better

classification rate then corals, where DRK (non-coral) has almost perfect classification rate due

to its distinct nature (almost dark blue plain image), LEIO (coral) has excellent classification

rate due to its distinction color property (orange), and LOPH (coral) & ENCW (coral) has

lowest classification rates due to their color confusion with each other & with BLD (non-coral).

Sub-figures 5.9c, 5.9d show the evolution of training and test errors in MLC & and ADS

datasets across network epochs, such that the proposed method’s errors have better convergence

curves (almost half) with ADS dataset over the other one. From epoch 30 in MLC dataset,

increased gap starts to appear between training and test errors leading to algorithm over-fitting

over training data. From epoch 35 in ADS dataset, training and test errors are almost stagnant

(no major improvement) with respect to typical evolution of neural networks. MLC & ADS

datasets have similar evolution curves (Sub-figures 5.9e, 5.9f) for learning rate across presented

network epochs.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Evaluation Metrics for selected network architecture:
(a,c,e) MLC dataset, (b,d,f) ADS dataset
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Chapter 6

Conclusions

This chapter summarizes the outcomes of proposed thesis, in which the following sections

present an overview of the proposed work, discuss the main contributions, and finally introduce

limitations in the implementation of proposed work and future work in the same research

direction.

6.1 Summary

This thesis discussed the importance of deep/shallow sea corals, their main threads from human

interaction and environmental changes, their human-manual transplantation solution through

scuba divers, and the involvement of under-water robots in automatic development technique

in coral detection & transplantation using camera sensors. It covered all recent research work

in coral classification using images captured from remotely operated underwater vehicles, and

introduction of modern deep supervised classification method (convolutional neural networks)

& its recent applications in related research fields (object detection and classification). Using

new introduced deep-sea coral dataset from Heriot-Watt University along side with shallow-sea

coral dataset from University of California San Diego, it proposed a supervised sparse-based

classification method for coral species using convolutional neural networks as feature extraction

& classification, and investigated computation of supplementary channels (feature-based maps)

besides basic spatial color channels (spatial-based maps) to act as coral input data with state-

of-art preprocessing underwater algorithms for image enhancement and color normalization. It

finally suggested well-defined future research vision in under-water imaging applications using

deep learning methods.

39
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6.2 Main Contributions

The proposed framework in this thesis presented some contributions as follows:

• First application of deep learning techniques (especially convolutional neural networks)

in under-water image processing (detection or classification).

• Introduction of new coral-labeled dataset “Atlantic Deep Sea” representing cold-water

coral reefs from Scotland and Ireland.

• Investigation of convolutional neural networks in handling noisy large-sized images, ma-

nipulating point-based multi-channel input data.

• Hybrid image patching procedure for multi-size scaling process across different square-

based windowing around labeled points.

• Production of two pending publications in ICPR-CVAUI 2014 (22nd International Con-

ference on Pattern Recognition Workshop: Computer Vision for Analysis of Underwater

Imagery), and ACCV 2014 (12th Asian Conference on Computer Vision).

6.3 Limitations

The proposed classification framework has the following limitations:

• Lack of fast performance of proposed algorithm and handling large-sized input data.

• In-comprehensive assessment comparison against other coral classification methods.

• Difficulty in finding optimal-fit structure and parameters for deep convolutional neural

networks due to insufficient references for new research deep learning techniques.

• Absence of uniform distribution for labeled coral classes and continuous depth calculation

for further scale-based operations.

6.4 Future Work

The future work of proposed method will cover avoiding information loss of dimension reduction

for convolutional neural networks (no hidden sub-sampling layers will be used), composition

of multiple deep convolutional models for N-dimensional data (different learning processes for

basic and extra channels of input data), development of real-time image/video application for
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coral recognition and detection (multi-day offline training and real-time online testing to sat-

isfy the technical requirements of cold-water coral group members during summer internship at

Heriot-Watt University), code optimization and improvement to build GPU computation for

processing huge image datasets and edge enhancement for feature-based maps, finally intensive

nature analysis for different coral classes in variant aquatic environments (deep study on fail-

ure classification results based on physical properties and environmental correlation of target

corals).
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Datasets

A.1 Moorea Labeled Corals

A.1.1 Coral classes
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A.1.2 Non-coral classes

Sparse Coral Classification Using Deep Convolutional Neural Networks



Chapter A: Datasets 44

A.2 Atlantic Deep Sea

A.2.1 Coral classes
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A.2.2 Non-coral classes
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