51,099 research outputs found

    The Empirical Beta Copula

    Full text link
    Given a sample from a multivariate distribution FF, the uniform random variates generated independently and rearranged in the order specified by the componentwise ranks of the original sample look like a sample from the copula of FF. This idea can be regarded as a variant on Baker's [J. Multivariate Anal. 99 (2008) 2312--2327] copula construction and leads to the definition of the empirical beta copula. The latter turns out to be a particular case of the empirical Bernstein copula, the degrees of all Bernstein polynomials being equal to the sample size. Necessary and sufficient conditions are given for a Bernstein polynomial to be a copula. These imply that the empirical beta copula is a genuine copula. Furthermore, the empirical process based on the empirical Bernstein copula is shown to be asymptotically the same as the ordinary empirical copula process under assumptions which are significantly weaker than those given in Janssen, Swanepoel and Veraverbeke [J. Stat. Plan. Infer. 142 (2012) 1189--1197]. A Monte Carlo simulation study shows that the empirical beta copula outperforms the empirical copula and the empirical checkerboard copula in terms of both bias and variance. Compared with the empirical Bernstein copula with the smoothing rate suggested by Janssen et al., its finite-sample performance is still significantly better in several cases, especially in terms of bias.Comment: 23 pages, 3 figure

    Resampling Procedures with Empirical Beta Copulas

    Full text link
    The empirical beta copula is a simple but effective smoother of the empirical copula. Because it is a genuine copula, from which, moreover, it is particularly easy to sample, it is reasonable to expect that resampling procedures based on the empirical beta copula are expedient and accurate. In this paper, after reviewing the literature on some bootstrap approximations for the empirical copula process, we first show the asymptotic equivalence of several bootstrapped processes related to the empirical copula and empirical beta copula. Then we investigate the finite-sample properties of resampling schemes based on the empirical (beta) copula by Monte Carlo simulation. More specifically, we consider interval estimation for some functionals such as rank correlation coefficients and dependence parameters of several well-known families of copulas, constructing confidence intervals by several methods and comparing their accuracy and efficiency. We also compute the actual size and power of symmetry tests based on several resampling schemes for the empirical copula and empirical beta copula.Comment: 22 pages, 8 table

    Weak convergence of the weighted empirical beta copula process

    Full text link
    The empirical copula has proved to be useful in the construction and understanding of many statistical procedures related to dependence within random vectors. The empirical beta copula is a smoothed version of the empirical copula that enjoys better finite-sample properties. At the core lie fundamental results on the weak convergence of the empirical copula and empirical beta copula processes. Their scope of application can be increased by considering weighted versions of these processes. In this paper we show weak convergence for the weighted empirical beta copula process. The weak convergence result for the weighted empirical beta copula process is stronger than the one for the empirical copula and its use is more straightforward. The simplicity of its application is illustrated for weighted Cram\'er--von Mises tests for independence and for the estimation of the Pickands dependence function of an extreme-value copula.Comment: 19 pages, 2 figure

    The multivariate Piecing-Together approach revisited

    Get PDF
    The univariate Piecing-Together approach (PT) fits a univariate generalized Pareto distribution (GPD) to the upper tail of a given distribution function in a continuous manner. A multivariate extension was established by Aulbach et al. (2012a): The upper tail of a given copula C is cut off and replaced by a multivariate GPD-copula in a continuous manner, yielding a new copula called a PT-copula. Then each margin of this PT-copula is transformed by a given univariate distribution function. This provides a multivariate distribution function with prescribed margins, whose copula is a GPD-copula that coincides in its central part with C. In addition to Aulbach et al. (2012a), we achieve in the present paper an exact representation of the PT-copula's upper tail, giving further insight into the multivariate PT approach. A variant based on the empirical copula is also added. Furthermore our findings enable us to establish a functional PT version as well.Comment: 12 pages, 1 figure. To appear in the Journal of Multivariate Analysi

    Penalized EM algorithm and copula skeptic graphical models for inferring networks for mixed variables

    Full text link
    In this article, we consider the problem of reconstructing networks for continuous, binary, count and discrete ordinal variables by estimating sparse precision matrix in Gaussian copula graphical models. We propose two approaches: â„“1\ell_1 penalized extended rank likelihood with Monte Carlo Expectation-Maximization algorithm (copula EM glasso) and copula skeptic with pair-wise copula estimation for copula Gaussian graphical models. The proposed approaches help to infer networks arising from nonnormal and mixed variables. We demonstrate the performance of our methods through simulation studies and analysis of breast cancer genomic and clinical data and maize genetics data

    A Nonparametric Bayesian Approach to Copula Estimation

    Full text link
    We propose a novel Dirichlet-based P\'olya tree (D-P tree) prior on the copula and based on the D-P tree prior, a nonparametric Bayesian inference procedure. Through theoretical analysis and simulations, we are able to show that the flexibility of the D-P tree prior ensures its consistency in copula estimation, thus able to detect more subtle and complex copula structures than earlier nonparametric Bayesian models, such as a Gaussian copula mixture. Further, the continuity of the imposed D-P tree prior leads to a more favorable smoothing effect in copula estimation over classic frequentist methods, especially with small sets of observations. We also apply our method to the copula prediction between the S\&P 500 index and the IBM stock prices during the 2007-08 financial crisis, finding that D-P tree-based methods enjoy strong robustness and flexibility over classic methods under such irregular market behaviors
    • …
    corecore