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a b s t r a c t

The univariate Piecing-Together approach (PT) fits a univariate generalized Pareto
distribution (GPD) to the upper tail of a given distribution function in a continuousmanner.
A multivariate extension was established by Aulbach et al. (in press) [2]: the upper tail
of a given copula C is cut off and replaced by a multivariate GPD-copula in a continuous
manner, yielding a new copula called a PT-copula. Then each margin of this PT-copula
is transformed by a given univariate distribution function. This provides a multivariate
distribution functionwith prescribedmargins,whose copula is a GPD-copula that coincides
in its central part with C . In addition to Aulbach et al. (in press) [2], we achieve in the
present paper an exact representation of the PT-copula’s upper tail, giving further insight
into the multivariate PT approach. A variant based on the empirical copula is also added.
Furthermore our findings enable us to establish a functional PT version as well.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

As shown by Balkema and de Haan [4] and Pickands [15], the upper tail of a univariate distribution function F can
reasonably be approximated only by that of a generalized Pareto distribution (GPD), which leads to the Peaks-Over-Threshold
(POT) approach: set for a univariate random variable X with distribution function F

F [x0](x) = P(X ≤ x | X > x0) =
F(x) − F(x0)
1 − F(x0)

, x ≥ x0,

where we require F(x0) < 1. The univariate POT is the approximation of the upper tail of F by that of a GPD

F(x) = {1 − F(x0)}F [x0](x) + F(x0)
≈POT {1 − F(x0)}Qγ ,µ,σ (x) + F(x0), x ≥ x0,

where γ , µ, σ are shape, location and scale parameters of the GPD Q , respectively. The family of univariate standardized
GPD is given by

Q1,α(x) = 1 − x−α, x ≥ 1,
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Fig. 1. The upper tail of a given copula C is cut off and replaced by GPD-copula Q .

Q2,α(x) = 1 − (−x)α, −1 ≤ x ≤ 0,
Q3(x) = 1 − exp(−x), x ≥ 0,

being the Pareto, beta and exponential GPD. Note that Q2,1(x) = 1+ x, −1 ≤ x ≤ 0, is the uniform distribution function on
(−1, 0). Multivariate GPD with these margins will play a decisive role in what follows.

The preceding considerations lead to the univariate Piecing-Together approach (PT), bywhich the underlying distribution
function F is replaced by

F∗

x0(x) =


F(x), x < x0,
{1 − F(x0)}Qγ ,µ,σ (x) + F(x0), x ≥ x0,

(1)

typically in a continuous manner. This approach aims at an investigation of the upper end of F beyond observed data.
Replacing F in (1) by the empirical distribution function of the data provides, in particular, a semiparametric approach
to the estimation of high quantiles; see, e.g., [16, Section 2.3].

A multivariate extension of the univariate PT approach was developed in [2] and, for illustration, applied to operational
loss data. This approach is based on the idea that a multivariate distribution function F can be decomposed into its copula
C and its marginal distribution functions. The multivariate PT approach then consists of the two steps.

(i) The upper tail of the given d-dimensional copula C is cut off and substituted by the upper tail of a multivariate GPD-
copula in a continuous manner such that the result is again a copula, called a PT-copula. Fig. 1 illustrates the approach in
the bivariate case: the copula C is replaced in the upper right rectangle of the unit square by a GPD-copula Q ; the lower
part of C is kept in the lower left rectangle, whereas the other two rectangles are needed for a continuous transition
from C to Q .

(ii) Univariate distribution functions F∗

1 , . . . , F∗

d are injected into the resulting copula.

Taken as a whole, this approach provides a multivariate distribution function with prescribed margins F∗

i , whose copula
coincides in its lower or central part with C and in its upper tail with a GPD-copula.

While in the paper by Aulbach et al. [2] it was merely shown that the generated PT-copula is a GPD-copula, we achieve
in the present paper an exact characterization, yielding further insight into the multivariate PT approach. A variant based
on the empirical copula is also added. Our findings enable us to establish a functional PT version as well.

The present paper is organized as follows. In Section 2, we compile basic definitions, auxiliary results and tools. The
multivariate PT result by Aulbach et al. [2] will be revisited and greatly improved in Section 3. In Section 4, we will extend
the multivariate PT approach to functional data.

2. Auxiliary results and tools

In this section, we compile several auxiliary results and tools from themultivariate extreme value theory (EVT). Precisely,
we characterize in Proposition 2.1, Corollaries 2.2 and 2.4 the max-domain of attraction of a multivariate distribution
function in terms of its copula. This implies an expansion of the lower tail of a survival copula in Corollary 2.3. Lemma 2.6
provides a characterization of multivariate GPD in terms of random vectors. For recent accounts of basic and advanced
topics of EVT, we refer to the monographs by de Haan and Ferreira [7], Resnick [17,18] and Falk et al. [9], among
others.

Let F be an arbitrary d-dimensional distribution function that is in the domain of attraction of a d-dimensional extreme
value distribution (EVD) G (denoted by F ∈ D(G)), i.e., there exist norming constants an > 0 ∈ Rd, bn ∈ Rd such that

F n(anx + bn) →n→∞ G(x), x ∈ Rd,
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where all operations onvectors aremeant componentwise. Thedistribution functionG ismax-stable, i.e., there exist norming
constants cn > 0 ∈ Rd, dn ∈ Rd with

Gn(cnx + dn) = G(x), x ∈ Rd.

The one-dimensional margins Gi of G are up to scale and location parameters univariate EVD. With shape parameter α > 0,
the family of (univariate) standardized EVD is

G1,α(x) = exp

−x−α


, x > 0,

G2,α(x) = exp {−(−x)α} , x ≤ 0,

G3(x) = exp

−e−x , x ∈ R,

being the Fréchet, (reverse) Weibull and Gumbel EVD, respectively.
The following two results are taken from Aulbach et al. [2].

Proposition 2.1. A distribution function F with copula CF satisfies F ∈ D(G) if, and only if, this is true for the univariate margins
of F and if the expansion

CF (u) = 1 − ∥1 − u∥D + o(∥1 − u∥) (2)

holds uniformly for u ∈ [0, 1]d, where ∥·∥D is some D-norm.

A D-norm ∥·∥D on Rd is defined by

∥x∥D := E

max
1≤i≤d

(|xi|Zi)


, x ∈ Rd,

where Z = (Z1, . . . , Zd) is an arbitrary random vector which satisfies Z ∈ [0, c]d for some c > 0 together with
E(Zi) = 1, 1 ≤ i ≤ d. In this case Z is called generator of ∥·∥D. Note that Z is not uniquely determined.

For example, any random vector of the form Z = 2(U1, . . . ,Ud), with (U1, . . . ,Ud) following an arbitrary copula, can be
utilized as a generator. This embeds the set of copulas into the set of D-norms.

The index D reflects the fact that for (t1, . . . , td−1) ∈ [0, 1]d−1 with t1 + · · · + tm−1 ≤ 1,

D(t1, . . . , td−1) :=



t1, . . . , td−1, 1 −

d−1
i=1

ti


D

is the Pickands dependence function, which provides anotherway of representing amultivariate EVDGwith standard negative
exponential margins:

G(x) = exp (− ∥x∥D) = exp


− ∥x∥1 D


x1
∥x∥1

, . . . ,
xd−1

∥x∥1


,

for x ≤ 0 ∈ Rd, where ∥x∥1 = |x1| + · · · + |xd| is the usual p-norm on Rd with p = 1; for details we refer to Falk et al.
[9, Section 4.4].

The following consequence of Proposition 2.1 is obvious. This result is also already contained in [2].

Corollary 2.2. Let F = C be a copula itself. Then C ∈ D(G) ⇐⇒ (2) holds.

The next result provides an expansion of the lower tail of the survival copula

C̄(u1, . . . , ud) = P(1 − U1 ≤ u1, . . . , 1 − Ud ≤ ud), u ∈ [0, 1]d

corresponding to any random vector U , whose distribution is a copula C with C ∈ D(G). It will be used in the derivation of
Proposition 3.2.

Corollary 2.3. Let (U1, . . . ,Ud) follow a copula C ∈ D(G), with corresponding D-norm generated by the random vector
Z = (Z1, . . . , Zd). Then for x ≤ 0 ∈ Rd

P(U1 > 1 + tx1, . . . ,Ud > 1 + txd)
t

→t↓0 E

min
1≤i≤d

(|xi|Zi)


=: λ(x),

where the function λ is known as the tail copula [11].
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Proof. First note that we have for arbitrary real numbers a1, . . . , ad the equality

min(a1, . . . , ad) =


∅≠K⊂{1,...,d}

(−1)|K |−1 max(ak : k ∈ K),

which can be seen by induction. Denote by ek the k-th unit vector in the Euclidean spaceRd. The inclusion–exclusion theorem
together with Corollary 2.2 then implies for fixed x ≤ 0 ∈ Rd and arbitrary t > 0

P(U1 > 1 + tx1, . . . ,Ud > txd) = 1 − P


d

i=1

{Ui ≤ 1 + txi}


= 1 −


∅≠K⊂{1,...,d}

(−1)|K |−1P(Uk ≤ 1 + txk, k ∈ K)

= 1 −


∅≠K⊂{1,...,d}

(−1)|K |−1


1 − t


k∈K

xkek


D


+ o(t)

= t


∅≠K⊂{1,...,d}

(−1)|K |−1E

max
k∈K

(|xk|Zk)


+ o(t)

= tE

min
1≤i≤d

(|xi|Zi)


+ o(t),

which yields the assertion. �

A d-dimensional distribution function Q is called multivariate GPD iff its upper tail equals 1 + ln(G), precisely, iff there
exists a d-dimensional EVD G and x0 ∈ Rd with G(x0) < 1 such that

Q (x) = 1 + ln{G(x)}, x ≥ x0. (3)

Note that contrary to the univariate case, H(x) = 1 + ln{G(x)}, defined for each xwith ln{G(x)} ≥ −1, does not define a
distribution function unless d ∈ {1, 2} [13, Theorem 6].

If G has standard negative exponential margins Gi(x) = exp(x), x ≤ 0, then H(x) := 1 + ln{G(x)} = 1 − ∥x∥D, defined
for all x ≤ 0with ∥x∥D ≤ 1, is a quasi-copula [1,10]. Note that Hi(x) = 1 + x, −1 ≤ x ≤ 0. We call H a GP function. For each
GP function H there exists a distribution function Q with H(x) = Q (x) = 1− ∥x∥D , x ≥ x0; see Corollary 2.2 in [2]. We call
Q a multivariate GPD with ultimately uniform margins. Thus we obtain the following consequence.

Corollary 2.4. A copula C satisfies C ∈ D(G) if, and only if, there exists a GPDQ with ultimately uniformmargins, i.e., the relation

C(u) = Q (u − 1) + o(∥u − 1∥)

holds uniformly for u ∈ [0, 1]d. In this case Q (x) = 1 + ln{G(x)} = 1 − ∥x∥D , x0 ≤ x ≤ 0 ∈ Rd.

Example 2.5. Under suitable conditions, an Archimedean copula CA is in the domain of attraction of the EVD G(x) =

exp (− ∥x∥ϑ ) , x ≤ 0 ∈ Rd, where ∥x∥ϑ =

d
i=1 |xi|ϑ

1/ϑ
, ϑ ∈ [1, ∞], is the usual ϑ-norm on Rd, with the convention

∥x∥∞ = max1≤i≤d |xi|; see [6,12]. In this case it is reasonable to replace CA(u) for u close to 1 by Q (u − 1) = 1 − ∥u − 1∥ϑ .

Themultivariate PT approach in [2] is formulated in terms of randomvectors and based on the following result. Its second
part goes back to Buishand et al. [5, Section 2.2], formulated for the bivariate case and for Pareto margins instead of uniform
ones.

Lemma 2.6. A distribution function Q is a multivariate GPD with ultimately uniform margins,

⇐⇒ there exists a D-norm ∥·∥D on Rd such that Q (x) = 1 − ∥x∥D , x0 ≤ x ≤ 0 ∈ Rd

⇐⇒ there exists a generator Z = (Z1, . . . , Zd) such that for x0 ≤ x ≤ 0 ∈ Rd

Q (x) = P

−U


1
Z1

, . . . ,
1
Zd


≤ x


,

where the univariate random variable U is uniformly distributed on (0, 1) and independent of Z .

Note that −U/Zi can be replaced by max(M, −U/Zi), 1 ≤ i ≤ d, in the preceding result with some constant M < 0 to
avoid possible division by zero.

In view of the preceding discussion we call a copula C a GPD-copula if there exists u0 < 1 ∈ Rd such that

C(u) = 1 − ∥u − 1∥D , u0 ≤ u ≤ 1 ∈ Rd,
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where ∥·∥D is an arbitrary D-norm on Rd, i.e., if there exists a generator Z = (Z1, . . . , Zd) such that for u0 ≤ u ≤ 1 ∈ Rd

C(u) = P

−U


1
Z1

, . . . ,
1
Zd


≤ u − 1


,

where the random variable U is uniformly distributed on (0, 1) and independent of Z .

3. Multivariate Piecing-Together

Let U = (U1, . . . ,Ud) follow an arbitrary copula C and V = (V1, . . . , Vd) follow a GPD-copula with generator Z . We
suppose that U and V are independent.

Choose a threshold u = (u1, . . . , ud) ∈ (0, 1)d and put for 1 ≤ i ≤ d

Yi := Ui1(Ui ≤ ui) + {ui + (1 − ui)Vi}1(Ui > ui). (4)

While it wasmerely shown in [2] that the random vector Y = (Y1, . . . , Yd) actually follows a GPD, the followingmain result
of this section provides a precise characterization of the corresponding D-norm.

Theorem 3.1. Suppose that P(U > u) > 0. The random vector Y defined through (4) follows a GPD-copula, which coincides
with C on [0, u] ∈ (0, 1)d and D-norm given by

∥x∥D = E

max
1≤j≤d


|xj|Zj

1(Uj > uj)

1 − uj


,

where Z and U are independent.

Note thatZ := (Z1, . . . ,Zd) withZj := Zj1(Uj > uj)/(1 − uj), is a generator with the characteristic properties of being
nonnegative, bounded and satisfying E(Zj) = 1, 1 ≤ j ≤ d, due to the independence ofZ andU . In analogy to a corresponding
terminology in point process theory one might callZ a thinned generator.

Proof. Elementary computations yield

P(Yi ≤ x) = x, 0 ≤ x ≤ 1,

i.e., Y follows a copula. We have, moreover, for 0 ≤ x ≤ u

P(Y ≤ x) =


K⊂{1,...,d}

P

Y ≤ x; Uk ≤ uk, k ∈ K ; Uj > uj, j ∈ K {


=


K⊂{1,...,d}

P

Ui1(Ui ≤ ui) + {ui + (1 − ui)Vi}1(Ui > ui) ≤ xi, 1 ≤ i ≤ d;

Uk ≤ uk, k ∈ K ; Uj > uj, j ∈ K {


= P(Ui ≤ xi, 1 ≤ i ≤ d)
= C(x)

and for u < x ≤ 1

P(Y ≤ x) =


K⊂{1,...,d}

P

Y ≤ x; Uk ≤ uk, k ∈ K ; Uj > uj, j ∈ K {


=


K⊂{1,...,d}

P

Uk ≤ uk, k ∈ K ; uj + (1 − uj)Vj ≤ xj,Uj > uj, j ∈ K {


=


K⊂{1,...,d}

P

Uk ≤ uk, k ∈ K ;Uj > uj, j ∈ K {


P

Vj ≤

xj − uj

1 − uj
, j ∈ K {



=


K⊂{1,...,d}

E


k∈K

1(Uk ≤ uk)


j∈K {

1(Uj > uj)


 P


Vj ≤

xj − uj

1 − uj
, j ∈ K {


.

If x < 1 is large enough, then we have for K {
≠ ∅

P

Vj ≤

xj − uj

1 − uj
, j ∈ K {


= 1 − E


max
j∈K {

xj − uj

1 − uj
− 1

 Zj
= 1 − E


max
j∈K {


|xj − 1|
1 − uj

Zj
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and, thus,

P(Y ≤ x) = P(Uk ≤ uk, 1 ≤ k ≤ d) +


K⊂{1,...,d}

K{≠∅

E


k∈K

1(Uk ≤ uk)


j∈K {

1(Uj > uj)




×


1 − E


max
j∈K {


|xj − 1|
1 − uj

Zj



= 1 −


K⊂{1,...,d}

K{≠∅

E


k∈K

1(Uk ≤ uk)


j∈K {

1(Uj > uj)

max
j∈K {


|xj − 1|
1 − uj

Zj



= 1 − E

 
K⊂{1,...,d}

K{≠∅


k∈K

1(Uk ≤ uk)


j∈K {

1(Uj > uj)

max
j∈K {


|xj − 1|
1 − uj

Zj


= 1 − E


max
1≤j≤d


|xj − 1|Zj

1(Uj > uj)

1 − uj


= 1 − ∥x − 1∥D ,

as we can suppose independence of U and the generator Z . �

The following result justifies the use of the multivariate PT-approach as it shows that the PT vector Y , suitably
standardized, approximately follows the distribution of U close to one.

Proposition 3.2. Suppose that U = (U1, . . . ,Ud) follows a copula C ∈ D(G) with corresponding D-norm ∥·∥D generated by Z .
If the random vector V in definition (4) of the PT vector Y has this generator Z as well, then we have

P(U > v) = P{Yj > uj + vj(1 − uj), 1 ≤ j ≤ d | U > u} + o(∥1 − v∥)

uniformly for v ∈ [u, 1] ⊂ Rd.

The term o(∥1 − v∥) can be dropped in the preceding result if C is a GPD-copula itself, precisely, if C(x) = 1 − ∥x∥D ,
x ≥ u.

Proof. Repeating the arguments in the proof of Corollary 2.3 we obtain

P(U > v) = E

min
1≤j≤d

{(1 − vj)Zj}


+ o(∥1 − v∥)

uniformly for v ∈ [0, 1]d.
We have, on the other hand, for v close enough to 1

P{Yj > uj + vj(1 − uj), 1 ≤ j ≤ d | U > u} = P{U < (1 − vj)Zj, 1 ≤ j ≤ d} = E

min
1≤j≤d

{(1 − vj)Zj}


,

which completes the proof. �

If the copula C is not known, the preceding PT-approach can be modified as follows, with C replaced by the empirical
copula. Suppose we are given n copies X1, . . . ,Xn of a random vector X = (X (1), . . . , X (d)). Set for 1 ≤ j ≤ d

F (j)
n (x) :=

1
n + 1

n
i=1

1(X (j)
i ≤ x), x ∈ R,

which is essentially the empirical distribution function of the j-th components of X1, . . . ,Xn. Transform each random vector
Xi in the sample to the vector of its standardized ranks Ri :=


Fn(X

(1)
i ), . . . , Fn(X

(d)
i )

. The empirical copula is then the

empirical distribution function corresponding to R1, . . . ,Rn:

Cn(u) =
1
n

n
i=1

1(Ri ≤ u), u ∈ [0, 1]d.

Properties of the empirical copula are well studied; we refer to Segers [19] and the literature cited therein.
Given the empirical copula Cn, let the random vector U∗

= (U∗

1 , . . . ,U∗

d ) follow this distribution function Cn and let
V = (V1, . . . , Vd) follow a GPD-copula. Again we suppose that U and V are independent.
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Choose a threshold u = (u1, . . . , ud) ∈ (0, 1)d and put for 1 ≤ i ≤ d

Y ∗

i := U∗

i 1(U
∗

i ≤ ui) + {u∗

i + (1 − u∗

i )Vi}1(U∗

i > ui), (5)

where u∗

i := Pn(U∗

i ≤ ui). Recall that the preceding probability is, actually, a conditional one, given the empirical copula
Cn. To avoid confusion we add the index n. The following result can be shown by repeating the arguments in the proof of
Theorem 3.1. The minimummin(u, u∗) is meant to be taken componentwise.

Proposition 3.3. Suppose that the threshold u ∈ (0, 1)d satisfies Pn(U∗ > u) > 0. The random vector Y ∗, defined componen-
twise in (5), follows a multivariate GPD, which coincides on [0,min(u, u∗)] with the empirical copula Cn and, for x < 1 large
enough,

Pn(Y ∗
≤ x) = 1 − ∥x∥Dn ,

where the D-norm is given by

∥x∥Dn = En


max
1≤j≤d


|xj|Zj

1(U∗

j > uj)

1 − u∗

j


,

the generator Z and U∗ being independent and En denoting the expected value with respect to Pn.

Proposition 3.2 can now be formulated as follows; its proof carries over.

Proposition 3.4. Let C be a copula with C ∈ D(G) and corresponding D-norm ∥·∥D generated by Z . Let the random vector U
follow this copula C. Suppose that the random vector V in definition (5) of the PT random vector Y ∗ has this generator Z as well.
Then we have

P(U > v) = Pn{Y ∗

j > u∗

j + vj(1 − u∗

j ), 1 ≤ j ≤ d | U∗ > u} + o(∥1 − v∥)

uniformly for v ∈ [u, 1] ∈ Rd, where U∗ follows the empirical copula Cn.

The term o(∥1 − v∥) can again be dropped in the preceding result if C is a GPD-copula itself, precisely, if C(x) =

1 − ∥x − 1∥D , x ≥ u.

4. Piecing together: a functional version

In this section, we will extend the PT approach from Section 3 to function spaces. Suppose we are given a stochastic
process X = (Xt)t∈[0,1] with corresponding continuous copula process U = (Ut)t∈[0,1] ∈ C[0, 1], where C[0, 1] denotes
the space of continuous functions on [0, 1]. A copula process U is characterized by the condition that each Ut is uniformly
distributed on (0, 1). For a review of the attempts to extend the use of copulas to a dynamic setting, we refer to Ng [14] and
the review paper by Andrew Patton in this Special Issue.

Choose a generator process Z = (Zt)t∈[0,1], characterized by the condition

0 ≤ Zt ≤ c, E(Zt) = 1, 0 ≤ t ≤ 1,

for some c ≥ 1. We require that Z ∈ C[0, 1] as well.
Let U be a uniformly distributed on (0, 1) random variable that is independent of Z and put for someM < 0

Vt := max

M, −

U
Zt


, 0 ≤ t ≤ 1. (6)

The process V = (Vt)t∈[0,1] ∈ C[0, 1] is called a standard generalized Pareto process (GPP) as it has ultimately uniform
margins; see below. This functional extension of multivariate GPD goes back to Buishand et al. [5, Section 2.3], again with
Pareto margins instead of uniform ones. We incorporate the constantM again to avoid possible division by zero.

Note that for 0 ≥ x ≥ K := max(M, −1/c)

P(Vt ≤ x) = P(U ≥ |x|Zt) =

 c

0
P(U ≥ |x|z) (P ∗ Zt)(dz) = 1 + x, (7)

i.e., each Vt follows close to zero a uniform distribution.
Denote by E[0, 1] the set of bounded functions f : [0, 1] → R, which have only a finite number of discontinuities, and

put Ē−
[0, 1] := {f ∈ E[0, 1] : f ≤ 0}. Repeating the arguments in the derivation of Eq. (7), we obtain for f ∈ Ē−

[0, 1] with
∥f ∥∞ ≤ |K |

P(V ≤ f ) = P{Vt ≤ f (t), t ∈ [0, 1]} = 1 − E


sup
t∈[0,1]

(|f (t)|Zt)


.
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To improve the readability of this paper, we set stochastic processes such as V in bold font and non stochastic functions
such as f in default font. Operations on functions such as ≤, > etc. are meant componentwise.

The process V can easily be modified to obtain a generalized Pareto copula process (GPCP) Q = (Qt)t∈[0,1], i.e., each Qt
follows the uniform distribution on (0, 1) and (Qt − 1)t∈[0,1] is a GPP. Just put

Vt :=


Vt if Vt > K
ξ if Vt ≤ K , 0 ≤ t ≤ 1,

where the randomvariable ξ is uniformly distributed on (−1, K) and independent of the processV ;we assume thatK > −1.
Note that eachVt is uniformly distributed on (−1, 0) and that for f ∈ Ē−

[0, 1] with ∥f ∥∞ < |K |

P
V ≤ f


= P

Vt ≤ f (t), 0 ≤ t ≤ 1


= P{Vt ≤ f (t), 0 ≤ t ≤ 1} = P(V ≤ f ). (8)

The processQ is now obtained by puttingQ := (Vt +1)t∈[0,1]. It does not have continuous sample paths, but it is continuous
in probability, i.e.,

P

|Qtn − Qt | > ε


→tn→t 0

for each t ∈ [0, 1] and any ε > 0.
Suppose that we are given a copula process U ∈ C[0, 1]. Choose a GPCP Q with generator Z ∈ C[0, 1],Q independent

of U , a threshold u ∈ (0, 1) and put

Yt := Ut1(Ut ≤ u) + {u + (1 − u)Qt}1(Ut > u), t ∈ [0, 1]. (9)

We call Y = (Yt)t∈[0,1] a PT-process. We require that the processesU and Z are independent. Note that Y is continuous under
the condition U > u. The following theorem is the main result in this section.

Theorem 4.1. The process Y = (Yt)t∈[0,1] with Yt as in (9) is a GPCP, which is continuous in probability, and with D-norm given
by

∥f ∥D = E


sup
t∈[0,1]


|f (t)|Zt

1(Ut > u)
1 − u


, f ∈ E[0, 1].

Note that E

supt∈[0,1] {|f (t)|Zt1(Ut > u)/(1 − u)}


is well defined, due to the continuity of Z and U . The thinned

generator process

Z =


Zt

1(Ut > u)
1 − u


t∈[0,1]

satisfies

0 ≤Zt ≤
c

1 − u
, E(Zt) = 1, t ∈ [0, 1],

and it is continuous in probability.

Proof. Each Yt is by Theorem 3.1 uniformly distributed on (0, 1). Continuity in probability follows from elementary
arguments. Choose f ∈ Ē−

[0, 1] with ∥f ∥∞ < (1 − u)min

|M|, |K |, c−1


. We have

P(Yt ≤ 1 + f (t), t ∈ [0, 1]) = P

{u + (1 − u)Qt}1(Ut > u) ≤ 1 + f (t), t ∈ [0, 1]


.

Note that the term Ut1(Ut ≤ u) can be neglected since Ut ≤ u implies Ut ≤ 1 + f (t) and, due to the restrictions on
f , 1 + f (t) > u > 0, t ∈ [0, 1]. Analogously, we may rewrite the probability from above as

P

(1 − u)Qt1(Ut > u) ≤ 1 − u + f (t), t ∈ [0, 1]


= P


(Qt − 1)1(Ut > u) ≤ 1 − 1(Ut > u) +

f (t)
1 − u

, t ∈ [0, 1]


= P

Qt − 1 − Qt1(Ut ≤ u) ≤

f (t)
1 − u

1(Ut ≤ u) +
f (t)
1 − u

1(Ut > u), t ∈ [0, 1]


= P

Qt − 1 ≤

f (t)
1 − u

1(Ut > u), t ∈ [0, 1]
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where the last equality is again a consequence of neglecting the terms corresponding to the case Ut ≤ u; note that the
restrictions on f imply f (t) ≥ u − 1. This probability has by (6) and (8) the representation

P

Vt ≤

f (t)
1 − u

1(Ut > u), t ∈ [0, 1]


= P

U ≥ sup

t∈[0,1]


|f (t)|Zt

1(Ut > u)
1 − u


= 1 − E


sup

t∈[0,1]


|f (t)|Zt

1(Ut > u)
1 − u


which completes the proof. �

In what follows, we justify the functional PT approach by extending Proposition 3.2. We say that a copula process
U ∈ C[0, 1] is in the functional domain of attraction of a max-stable process η ∈ C[0, 1], denoted by U ∈ D(η), if

P{n(U − 1) ≤ f }n →n→∞ P(η ≤ f ), f ∈ Ē−
[0, 1].

The max-stability of η is characterized by the equation

P


η ≤
f
n

n

= P(η ≤ f ), n ∈ N, f ∈ Ē−
[0, 1].

From Aulbach et al. [3] we know that there exists a generator process Z = (Zt)t∈[0,1] ∈ C[0, 1] such that for f ∈ Ē−
[0, 1]

P(η ≤ f ) = exp

−E


sup

t∈[0,1]
(|f (t)|Zt)


= exp (− ∥f ∥D) ,

which shows in particular that the process η has standard negative exponential margins. A continuous max-stable process
(MSP) with standard negative exponential margins will be called a standardMSP.We refer to Aulbach et al. [3] for a detailed
investigation of the functional domain of attraction condition, which is weaker than that based on weak convergence
developed in [8].

The next result, which justifies the functional PT-approach, is now an immediate consequence of Proposition 3.2. The
term o(∥1 − v∥) can again be dropped for (v1, . . . , vd) large enough, if the process U is itself a GPCP.

Proposition 4.2. Suppose that the copula process U ∈ C[0, 1] satisfies U ∈ D(η), where η ∈ C[0, 1] is a standard MSP with
generator process Z = (Zt)t∈[0,1] ∈ C[0, 1]. Choose a threshold u ∈ (0, 1) and arbitrary indices 0 ≤ t1 < · · · < td ≤ 1, d ∈ N.
If the process V in definition (9) of the PT-process Y has this generator Z as well, then we have

P

Utj > vtj , 1 ≤ j ≤ d


= P


Ytj > u + (1 − u)vj, 1 ≤ j ≤ d | Utj > u, 1 ≤ j ≤ d


+ o(∥1 − v∥),

uniformly for v ∈ [u, 1]d.
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