674,644 research outputs found

    Results of an RF Pulsed Heating Experiment at SLAC

    Get PDF
    Results are reported from an experiment on RF pulsed heating of copper at SLAC. Damage in the form of cracks may be induced on the surface after the application of many pulses of RF. The experiment consists of two circularly cylindrical cavities operated in the TE011 mode at a resonant frequency of 11.424 GHz. Each cavity received 8.5 MW, 1.2 microsecond pulses at 60 Hz corresponding to a calculated temperature rise of 120 K on the copper surface. After 5.5 x 10^7 pulses, the experiment was stopped and the copper surfaces were examined. Damage is present on the area of the surface where the maximum heating occurred.Comment: 3 pages, 7 figures, Presented at LINAC 2000 conference, Paper ID THA1

    Exposure of metallic copper surface on Cu-Al2O3-carbon catalysts

    Get PDF
    The bifunctional nature of Cu---Al2O3-on-carbon catalysts, used in the direct catalytic conversion of ethanol to ethyl acetate, prompted an examination of the dispersion of Cu on the composite catalyst. For this, the N2O-method of Osinga et al. for estimation of bare metallic copper surface on composite copper catalysts has been adapted for use on a gravimetric adsorption unit and then applied to several promoted and supported copper catalysts. For catalysts with Cu/Al atomic ratio 0.8 to 26, all reduced at 300 °C, the copper surface is only 1–8% of the total surface of 500–560 m2/g, but 50–430 m2/g Cu. The maximum Cu dispersion is obtained for the catalyst with Cu/Al = 6, which is also one of the best catalysts for the esterification reaction. The Cu surface rapidly increases from 1 to 10% of the total surface as the temperature of reduction of the catalyst is raised from 100 to 400 °C. On a low area (32 m2/g) asbestos carrier, a relatively higher Cu coverage of 55% can be obtained, but the activity of this catalyst is very poor. On use in the esterification reaction, the carbon-supported catalyst gets a more reddish brown copper color, however there is no increase in the exposed copper area.\ud \ud X-ray microscan studies of the catalyst prove that the copper sites on the surface (in an 1 μ-thick layer) are mostly in close association with the Al sites of the alumina promoter. Results from catalyst testing show that these Cu---Al sites or junctions are necessary to catalyze the condensation to ester of the acetaldehyde formed in the primary dehydrogenation of ethanol over copper. The microscan studies on the same spot on one and the same catalyst particle indicate that the distribution of Cu and Al in the 1 μ-thick layer on the catalyst surface does undergo some alterations when the catalyst is reduced at 300 °C and subsequently used in the esterification reaction at 275 °C. The exact nature of these alterations is still not clear

    High-strength braze joints between copper and steel

    Get PDF
    High-strength braze joints between copper and steel are produced by plating the faying surface of the copper with a layer of gold. This reduces porosity in the braze area and strengthens the resultant joint

    Ag-Cu alloy surfaces in an oxidizing environment: a first-principles study

    Full text link
    Recent experiments on model catalysts have shown that Ag-Cu alloys have improved selectivity with respect to pure silver for ethylene epoxidation. In this paper we review our first-principles investigations on the (111) surface of this alloy and present new findings on other low index surfaces. We find that, for every surface orientation, the presence of oxygen leads to copper segregation to the surface. Considering the alloy to be in equilibrium with an oxygen atmosphere and accounting for the effect of temperature and pressure, we compute the surface free energy and study the stability of several surface structures. Investigating the dependence of the surface free energy on the surface composition, we construct the phase diagram of the alloy for every surface orientation. Around the temperature, pressure and composition of interest for practical applications, we find that a limited number of structures can be present, including a thin layer of copper oxide on top of the silver surface and copper-free structures. Different surface orientations show a very similar behavior and in particular a single layer with CuO stoichiometry, significantly distorted when compared to a layer of bulk CuO, has a wide range of stability for all orientations. Our results are consistent with, and help explain, recent experimental measurements

    Evaluation of copper slag blast media for railcar maintenance

    Get PDF
    Copper slag was tested as a blasting substitute for zirconium silicate which is used to remove paint from railroad cars. The copper slag tested is less costly, strips paint faster, is produced near the point of need, provides a good bonding surface for paint, and permits the operator to work in a more comfortable position, i.e., standing nearly erect instead of having to crouch. Outdoor blasting with the tested Blackhawk (20 to 40 mesh) copper slag is also environmentally acceptable to the State of Utah. Results of tests for the surface erosion rate with copper slag blasting are included

    Nanocomposites of metallic copper and spinel ferrite films: Growth and self-assembly of copper particles

    Get PDF
    Nanocomposites of metallic copper and iron oxides films have been prepared by RF-sputtering of pure CuFeO2 delafossite target. The films are made of copper and spinel ferrite crystallites of less than 10 nm in diameter. The content of metallic copper and the ferrite composition depend on the sputtering conditions. For the shortest substrate-target distances, films are made of copper and copper substituted magnetite with low copper content. The formation of the metallic and spinel phases is due to the loss of a small quantity of oxygen during sputtering. When annealed under inert atmosphere, nanometric copper particles located in the upper part of the film, move on the surface and grow due to coalescence phenomena. The particle motion can be stopped by small grooves allowing the self-assembly of copper particles

    Shear strength of metal - SiO2 contacts

    Get PDF
    The strength of the bond between metals and SiO2 was studied by measuring the static coefficient of friction of metals contacting alpha-quartz in ultrahigh vacuum. It was found that copper with either chemisorbed oxygen, nitrogen, or sulphur exhibited higher contact strength on stoichiometric SiO2 than did clean copper. Since the surface density of states induced by these species on copper is similar, it appears that the strength of the interfacial bond can be related to the density of states on the metal surface
    corecore