214,611 research outputs found
Mechanistic studies on DNA damage by minor groove binding copper–phenanthroline conjugates
Copper–phenanthroline complexes oxidatively damage and cleave nucleic acids. Copper bis-phenanthroline and copper complexes of mono- and bis-phenanthroline conjugates are used as research tools for studying nucleic acid structure and binding interactions. The mechanism of DNA oxidation and cleavage by these complexes was examined using two copper–phenanthroline conjugates of the sequence-specific binding molecule, distamycin. The complexes contained either one or two phenanthroline units that were bonded to the DNA-binding domain through a linker via the 3-position of the copper ligand. A duplex containing independently generated 2-deoxyribonolactone facilitated kinetic analysis of DNA cleavage. Oxidation rate constants were highly dependent upon the ligand environment but rate constants describing elimination of the alkali-labile 2-deoxyribonolactone intermediate were not. Rate constants describing DNA cleavage induced by each molecule were 11–54 times larger than the respective oxidation rate constants. The experiments indicate that DNA cleavage resulting from β-elimination of 2-deoxyribonolactone by copper–phenanthroline complexes is a general mechanism utilized by this family of molecules. In addition, the experiments confirm that DNA damage mediated by mono- and bis-phenanthroline copper complexes proceeds through distinct species, albeit with similar outcomes
Isolation of bis(copper) key intermediates in Cu-catalyzed azide-alkyne "click reaction".
The copper-catalyzed 1,3-dipolar cycloaddition of an azide to a terminal alkyne (CuAAC) is one of the most popular chemical transformations, with applications ranging from material to life sciences. However, despite many mechanistic studies, direct observation of key components of the catalytic cycle is still missing. Initially, mononuclear species were thought to be the active catalysts, but later on, dinuclear complexes came to the front. We report the isolation of both a previously postulated π,σ-bis(copper) acetylide and a hitherto never-mentioned bis(metallated) triazole complex. We also demonstrate that although mono- and bis-copper complexes promote the CuAAC reaction, the dinuclear species are involved in the kinetically favored pathway
Synthesis and catalytic properties of copper(II) 1-aryl-5-benzothiazolylformazanates
New copper(II) benzothiazolylformazane complexes were synthesized and immobilized on AN-18 anion exchanger. The influence of the composition of the coordination core of copper(II) benzthiazolylformazanates and temperature on their catalytic properties in decomposition of H2O2 and oxidation of Na2S in aqueous solution was studied
Coordination of Cu(II) and Ni(II) in polymers imprinted so as to optimize amine chelate formation
Molecular imprinting has become an established technique. However, little was done on direct investigation of the sorbents produced. In the present work, en ESR method was used for the investigation of the complex formation processes within the sorbents imprinted with copper(II) and nickel(II). The sorbents were synthesized from a mixture of linear low molecular weight polyethyleneimine oligomers. The composition, structure and distribution of complexes in the resin phase were investigated. The effects of the synthesis conditions, loading degree and water content were examined. The presence of certain copper complexes was found to be a convenient characteristic of the imprinting efficiency. The optimum synthesis conditions for obtaining sorbents imprinted with copper(II) or nickel(II) were identified. The imprinting results in the improvement of the stability of the complexes and the selectivity and working capacity of the sorbents. The imprinted samples are also characterized by a more even distribution of chelating sites. The synthesis conditions and loading by ions allow for the regulation of the ratio between individual complexes and magnetic associates in the resin phase. This is a critical point on the future use of the metal containing imprinted sorbents as catalysts. (C) 2003 Published by Elsevier Science Ltd
Solid-state structure of copper complexes of N-(2-carboxyethyl)chitosan
The sorptivity for ions of the Irving-Williams series (Zn2+, Cu2+, Co2+, Ni2+) was estimated for the chelate sorbent N-(2-carboxyethyl)chitosan cross-linked by nanosecond electron-beam irradiation. The maximum capacity reaches 3.7 mmol/g using a mixture of the appropriate sulfates at pH 4.5. The selectivity of copper sorption is 80%. The structure of the coordination sphere of the copper complexes with N-(2-carboxyethyl)chitosan was investigated by ESR spectroscopy
Copper-catalyzed dehydrogenative borylation of terminal alkynes with pinacolborane.
LCuOTf complexes [L = cyclic (alkyl)(amino)carbenes (CAACs) or N-heterocyclic carbenes (NHCs)] selectively promote the dehydrogenative borylation of C(sp)-H bonds at room temperature. It is shown that σ,π-bis(copper) acetylide and copper hydride complexes are the key catalytic species
On-line electrogeneration of copper-peptide complexes in microspray mass spectrometry
The interaction of copper ions with peptides was investigated by electrospray mass spectrometry. Two electrospray micro-emitters were compared, the first one with a platinum electrode using a copper(II) electrolyte solution containing a peptide sample, and the second one with a sacrificial copper anode in a water/methanol solution containing only a peptide (i.e., angiotensin III, bradykinin, or Leu-enkephalin). The former yielded mainly Cu2+ complexes either with histidine residues or with the peptide backbone (Cu+ complexes can be also formed due to gas-phase reactions), whereas the latter can generate a mixture of both Cu+ and Cu2+ aqueous complexes that yield different complexation patterns. This study shows that electrospray emitters with soluble copper anodes enable the study of Cu(I)-peptide complexes in solutio
On the Stereochemistry of the Cations in the Doping Block of Superconducting Copper-Oxides
Metal-oxygen complexes containing Cu,- Tl-, Hg-, Bi- and Pb-cations are
electronically active in superconducting copper-oxides by stabilizing single
phases with enhanced , whereas other metal-oxygen complexes deteriorate
copper-oxide superconductivity. Cu, Tl, Hg, Bi, Pb in their actual oxidation
states are closed shell or inert pair ions. Their electronic
configurations have a strong tendency to polarize the oxygen environment. The
closed shell ions with low lying
excitations form linear complexes through hybridization polarizing
the apical oxygens. Comparatively low excitation energies
distinguish from other closed shell
ions deteriorating copper-oxide superconductivity, {\it e.g.} .Comment: 5 pages, uses REVTEX. To be published in: J. Superconductivity, Proc.
Int. Workshop on "Phase Separation, Electronic Inhomogenities and Related
Mechanisms for High T_c Superconductors", Erice (Sicily) 9-15 July 199
Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(II) and palladium(II).
The synthesis, spectroscopic and X-ray structural characterization of copper(II) and palladium(II) complexes with aziridine ligands as 2-dimethylaziridine HNCH2CMe2 (a), the bidentate N-(2-aminoethyl)aziridines C2H4NC2H4NH2 (b) or CH2CMe2NCH2CMe2NH2 (c) as well as the unsaturated azirine NCH2CPh (d) are reported. Cleavage of the cyclometallated Pd(II) dimer [μ-Cl(C6H4CHMeNMe2-C,N)Pd]2 with ligand a yielded compound [Cl(NHCH2CMe2)(C6H4CHMe2NMe2-C,N)Pd] (1a). The reaction of the aziridine complex trans-[Cl2Pd(HNC2H4)2] with an excess of aziridine in the presence of AgOTf gave the ionic chelate complex trans-[(C2H4NC2H4NH2-N,N′)2Pd](OTf)2 (2b) which contains the new ligand b formed by an unexpected insertion and ring opening reaction of two aziridines (“aziridine dimerization”). CuCl2 reacted in pure HNC2H4 or HNCH2CMe2 (b) again by “dimerization” to give the tris-chelated ionic complex [Cu(C2H4NC2H4NH2-N,N′)3]Cl2 (3b) or the bis-chelated complex [CuCl(C2H2Me2NC2H2Me2NH2-N,N′)2]Cl (4c). By addition of 2H-3-phenylazirine (d) to PdCl2, trans-[Cl2Pd(NCH2CPh)2] (5d) was formed. All new compounds were characterized by NMR, IR and mass spectra and also by X-ray structure analyses (except 3b). Additionally the cytotoxic effects of these complexes were examined on HL-60 and NALM-6 human leukemia cells and melanoma WM-115 cells. The antimicrobial activity was also determined. The growth of Gram-positive bacterial strains (S. aureus, S. epidermidis, E. faecalis) was inhibited by almost all tested complexes at the concentrations of 37.5–300.0 μg mL−1. However, MIC values of complexes obtained for Gram-negative E. coli and P. aeruginosa, as well as for C. albicans yeast, mostly exceeded 300 μg mL−1. The highest antibacterial activity was achieved by complexes 1a and 2b. Complex 2b also inhibited the growth of Gram-negative bacteria.
Graphical abstract: Synthesis, structural characterization, antimicrobial and cytotoxic effects of aziridine, 2-aminoethylaziridine and azirine complexes of copper(ii) and palladium(ii
Metal complexes as potential ligands : the deprotonation of aminephenolate metal complexes
The cationic nickel, copper and zinc complexes of tris-(2-hydroxybenzyl)-aminoethylamine (H6TrenSal) have been deprotonated using potassium hydroxide. The nickel complex can be sequentially deprotonated to form a series of compounds namely, [(H6TrenSal)Ni]+, [(H6TrenSal)Ni] and "[(H6TrenSal)Ni]K". The latter is isolated as a mixture of species namely [{(H6TrenSal)Ni}K(EtOH)]2, [{(H6TrenSal)Ni}K(EtOH)2-μ-OH2]2 and [{(H6TrenSal)Ni}K(EtOH)2-μ-EtOH]2, which co-crystallise in a roughly 50:27.5:22.5 ratio. In contrast the deprotonation of [(H6TrenSal)M]+ (M = Cu, Zn) results in the formation of tetrameric complexes [({(H6TrenSal)Ni}K(OH2)2)4(μ4-OH2)]
- …
