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Abstract:  The cationic nickel, copper and zinc complexes of tris-((2-hydroxybenzyl)-

aminoethylamine (H6TrenSal) have been deprotonated using potassium hydroxide.  The 

nickel complex can be sequentially deprotonated to form a series of compounds namely, 

[(H6TrenSal)Ni]+ , [(H6TrenSal)Ni] and “[(H6TrenSal)Ni]K”.  The latter is isolated as a 

mixture of species namely [{(H6TrenSal)Ni}K(EtOH)]2, [{(H6TrenSal)Ni}K(EtOH)2-μ-

OH2]2 and [{(H6TrenSal)Ni}K(EtOH)2-μ-EtOH]2. which co-crystallise in a roughly 

50:27.5:22.5 ratio.  In contrast the deprotonation of [(H6TrenSal)M]+ (M = Cu, Zn) results in 

the formation of tetrameric complexes [({(H6TrenSal)Ni}K(OH2)2)4(μ4-OH2)].   
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 We have recently turned our attention to the use of multidentate ligands as a way of 

constructing multimetallic complexes [1-3].  The synthetic protocols employed to produce 

these compounds routinely use non-coordinating bases such as triethylamine to deprotonate 

the ligand during the reaction [3, 4].  Our previous work on Tris-(2-hydroxybenzyl)-

aminoethylamine (H6TrenSal**; figure 1, a) identified an interesting pair of encapsulated 

cationic nickel complexes namely [(H6TrenSal)(H2O)Ni]+ and [(H6TrenSal)Ni]+ [3].  Both of 

these species are six coordinate.  The former is a simple cation which utilises one phenoxide 

from the multidentate ligand leaving a coordination site free for a water molecule.  The latter 

is more interesting as it is devoid of the coordinated water and thus employs two phenols to 

complete the nickel coordination sphere (figure 1, b).  However, the second phenol remains 

protonated and the complex remains cationic.  The analogous copper and zinc complexes 

([(H6TrenSal)Cu]+; [(H6TrenSal)Zn]+) can also be formed.  These are found to be cationic 

five coordinate species which display two uncoordinated phenolates (figure 1, c).  It is 

intriguing that the nickel complexes do not naturally deprotonate to form neutral species as is 

found for the related tris-((2-hydroxy-5-bromo-benzyl)-aminoethylamine (H6Tren5BrSal; 

figure 1, d) [3].  Our interest in this process stems not just from our desire to design and 

synthesise further multimetallic complexes but to try an understand why [(H6TrenSal)Cu]+ 

and [(H6TrenSal)Zn]+ (figure 1, c) do not readily form trimetallic lanthanoid complexes 

similar to the corresponding nickel complex [3-6].  It is likely that the altered reaction 

pathway stems either from the nature of the uncoordinated phenolates or the manner in which 

the ligands deprotonate during reaction.  We have thus elected to investigate the reaction of 

caustic base with the cationic metal (M = Ni, Cu, Zn) complexes of H6TrenSal as a model of 

this process.   
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Figure 1.  Tris-((2-hydroxybenzyl)-aminoethylamine (H6TrenSal, a) and the structures of its 
corresponding nickel (b) copper and zinc (c) complexes.  The unique neutral motif of tris-((2-
hydroxy-5bromo-benzyl)-aminoethylamine ([(H6Tren5BrSal)Ni], d) is shown right [3]. 
 

[(H6TrenSal)Ni]Br was prepared using a method reported previously [7] and its 

structure displays the expected features.  The nickel coordinates to all four nitrogens of the 

Tren moiety and thus sits within (N2-Ni-Nx < 90o) the pocket created by the ligand.  Two 



phenols complete the N4O2 coordination sphere leaving the third phenol and the bromide as 

non-coordinating entities (figure 2a).  The Ni-O bond lengths of the coordinated phenols 

reflect the protonation of O1, the Ni-O2 distance (2.000(2)Å) being significantly shorter than 

that found for the corresponding Ni-O(1)H (2.266(3)Å).  Treatment of this complex with 

potassium hydroxide leads to formation of [(H6TrenSal)Ni] [8] (figure 2b).  The nickel 

complex has now di-deprotonated to form a neutral species.  Although the gross structures of 

the neutral and cationic species (figure 2a) look similar the Ni-O bond lengths (Ni-O1, 

2.070(4)Å, Ni-O2 2.072(4)Å) found for the neutral species are intermediate between those 

discussed above and identical to one-another, reflecting the fact that the two donor atoms (O1, 

O2) now have identical character.   

Figure 2.  Left: The X-ray crystal structure of [(H6TrenSal)Ni] Br.  The non-coordinating 
bromide counter ion is not shown.  The refinement allows the placement of the hydrogens.  
However only those on O1 and O3 are shown, thus confirming that the H6TrenSal ligand is 
only mono-deprotonated.  Right: The X-ray crystal structure of [(H6TrenSal)Ni].  The 
refinement allows the placement of the hydrogens.  However only the one O3 is shown, thus 
confirming that the H6TrenSal ligand is now di-deprotonated. The thermal ellipsoids are 
given at 50% probability.  The key metrical parameters of the complexes are given in table 1. 

 

Treatment of [(H6TrenSal)Ni]Br with excess potassium hydroxide leads to the 

formation of a third ([{(H6TrenSal)Ni}K(EtOH)]2, figure 3 top left), a fourth 

([{(H6TrenSal)Ni}K(EtOH)2-μ-OH2]2 top right) and a fifth ([{(H6TrenSal)Ni}K(EtOH)2-μ-

EtOH]2, bottom), complex in this series which all co-crystallise in a roughly 50:27.5:22.5% 

ratio [9].  All these species contain a potassium coordinated to an [(H6TrenSal)Ni] moiety 

and these species are all undoubtedly related, possibly existing in solution as a dynamic 

equilibrium.***  The major component (50%) in the crystal mixture, [{(H6TrenSal)Ni}K-μ-

EtOH]2, is constructed by employing the nickel complexes displayed in figures 2 as ligands 

with the potassium binding directly with O1 and O2.  The motif is completed by the 

deprotonation of the pendant phenoxide (O3) thus forming the desired anionic nickel moiety 

(figure 3).  The formation of the anionic metalloligand can be further confirmed by inspecting 



Figure 3.  The molecular structure of [{(H6TrenSal)Ni}K(EtOH)]2 (top left), 
[{(H6TrenSal)Ni}K(EtOH)2-μ-OH2]2 (top right) and [{(H6TrenSal)Ni}K(EtOH)2-μ-EtOH]2 
(bottom).  These three species co-crystallise in a roughly 50:27.5:22.5% ratio with the latter 
two species occupying one disordered site. The thermal ellipsoids are given at 50% 
probability.  The key metrical parameters of the major product, [{(H6TrenSal)Ni}K(EtOH)]2 
are given in table 1. 

 

the Ni-O distances (Ni-O1, 2.0624(18); Ni-O2, 2.0143(17).  These are of the same magnitude 

and commensurate with those reported for deprotonate phenoxide discussed above (figure 2).  

[{(H6TrenSal)Ni}K(EtOH)2-μ-OH2]2 and [{(H6TrenSal)Ni}K-μ-EtOH]2 are found 

occupying the same position in the unit cell with a site occupancy of roughly 1:1 (figure 3).  

In retrospect, this is understandable as these two complexes differ only in the manner in 

which the solvents (EtOH, H2O) in the core of the complex are accommodated.  Extracting 

the metrical parameters from the two species on this site is problematic.  However, 

rudimentary distances for Ni-O5 and Ni-O4 have been retrieved (2.062 and 2.056 

respectively) which are comparable to those reported for [(H6TrenSal)Ni] above (figure 2) 

suggesting that metalloligand has been fully deprotonated.  By inference the bridging species 

are thus identified as EtOH and H2O throughout.  The positioning of the pendant phenoxide in 

these complexes which coordinates solely to potassium facilitates the dimerisation of the 

motif.  A similar result is observed for the lanthanoids [3-6].  However, here the lower charge 

of the potassium fulfils the charge balance on the metalloligand and aggregation thus takes 

place around a centrosymmetric di-potassium core.  With higher charged cations i.e. 

lanthanoid the charge imbalance drives the reaction such that the ligands nucleate around a 

single trivalent cation. 



 

The nickel complexes isolated have a remarkably similar configuration.  A 

comparison of the metrical parameters for the three complexes together with those of 

[{(H6TrenSal)Ni}2La(MeOH)]+ and [(H6Tren5BrSal)Ni] create a picture of a nickel in an 

environment which does not change markedly in response to charge or the presence of 

external metal centres (table 1).  In this sense the [(H6TrenSal)Ni)] moiety would seem to be 

behaving as an univalent anion.  However the importance of the metal centre to the manner in 

which the donors sites are arranged is somewhat different to metalloligands where the metal 

(Cd, Hg, Ga, In) is an intrinsic part of the ligand rather than the framework around which it 

wraps [10-12]. 

 

 Napex-Ni (Å) <Ni2-Ni-N (o) 

[(H6TrenSal)Ni]+ 2.092(3) 82.9(1) 
84.1(1) 
84.4(1) 

[(H6TrenSal)Ni] 2.128(5) 81.8(2) 
83.2(2)  
83.7(2) 

[{(H6TrenSal)Ni}K(EtOH)]2 2.115(2) 81.20(8) 
83.78(8) 
83.98(8) 

[(H6Tren5BrSal)Ni] [3] 2.127 81.33 
81.04 
84.00 

 

[{(H6TrenSal)Ni}2La(MeOH)]+ [3] 

 
2.103 

 
 
 

2.108 

80.92 
83.39 
85.47 
 
84.68 
84.15 
80.34 

Table 1.  The key metrical parameters for [(H6TrenSal)Ni]+ (figure 1a), [(H6TrenSal)Ni], 
[{(H6TrenSal)Ni}K(EtOH)]2, [(H6Tren5BrSal)Ni] and [{(H6TrenSal)Ni}2La(MeOH)]+ [3]. 
[{(H6TrenSal)Ni}K(EtOH)2-μ-OH2]2 and [{(H6TrenSal)Ni}K-μ-EtOH]2 are not included as 
there is greater uncertainty regarding the metrical data. 

 

The analogous copper and zinc complexes ([(H6TrenSal)M]+, M= Cu, Zn) have also been 

prepared (figure 1 c).  However, they are both five coordinate complexes employing an N4O 

motif with two phenolates rotated away from the metal binding pocket [3].  If the 



Figure 4.  (left) The X-ray crystal structure of [({(H6TrenSal)Cu}K)(OH2)2)4-μ4-OH2].  The 
expansion of the motif from monopotassiate to tetrapotassiate is supported by the bridging 
nature of the two pendant phenolates (cf nickel figure 2).  (right) The alkali metal core of the 
complex.  The unique μ4-water molecule at the core of the complex is more clearly seen.  The 
zinc complex is not shown as it is isostructural to the copper species presented.  The thernal 
ellipsoids are given at probability 50%. 

 
uncoordinated phenolate is critical to the structures adopted (figure 2) then the presence of a 

second pendant phenolate might be expected to expand the structural catalogue of these 

potassiated metal complexes further.  Thus reactions of the metal nitrates, H6TrenSal and 

KOH or the treatment of [(H6TrenSal)M]+ (M= Cu, Zn) with potassium hydroxide leads to 

the formation of the tetranuclear system [({(H6TrenSal)M}K)(OH2)2)4(μ4-OH2)] (M= Cu, Zn) 

(figure 4) [13].  These complexes are viewed as a series of concentric layers of atoms starting 

from the unique water molecule (O4) at the core of the complex.  This is surrounded by four 

equidistant potassium atoms (K-O 3.0821(8), Cu; 3.0870(11), Zn) arranged relative to one 

another as a distorted tetrahedron.  In turn the coordination sphere of the potassium atoms are 

completed by five further oxygen donors; two from water molecules and three from the 

H6TrenSal ligands (O1, O2, O3).  Crucially the potassium is didentate to one of the 

[(H6TrenSal)Cu] species (O1, O2) and monodentate to the phenolate (O3) on an adjacent 

[(H6TrenSal)Cu] unit.  The expansion of the motif from monometallic (figure 2) to 

octametallic (M4K4, figure 4) undoubtedly hinges on the exposed nature of the additional 

pendant phenolate on the parent [(H6TrenSal)Cu] complex.   

 



In the established nickel-lanthanoid complexes of H6TrenSal [3, 4] phenolate pairs 

bridge the lanthanoid and nickel leaving only a single pendant phenolate to coordinate 

exclusively to the rare earth.  This facilitates the formation of a compact trimetallic motif, the 

lanthanoid being held close to the nickel centre.  However, for copper and zinc complexes 

(figure 4) two phenolates bind solely to the potassium creating a more open and complex 

structure.  This observation goes some way to explain why we have had difficulty in 

generating mixed lanthanoid complexes with [(H6TrenSal)Cu]+ and [(H6TrenSal)Zn]+ [3, 4].  

Although there is sufficient space within the core of [({(H6TrenSal)Cu}K)(OH2)2)4(μ4-OH2] 

to accommodate an atom with lanthanoid dimensions, the build up of charge within the core 

as a result of the aggregation of four trivalent cations will destabilise the trimetallic motif.   
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Figure 5.  A schematic of the manner in which potassium chelates to tetradentate N2O2 Schiff 
base complexes and their modified amine complexes [14–17].  Dotted lines denote -CH=N- 
and -CH2-NH- respectively 

 

Potassiated tetradentate Schiff base and modified Schiff base complexes have been 

reported previously [14-17].  In these compounds the alkali metal is chelated between the 

phenoxide donors of the neutral metal complex (figure 5).  The third phenolate present in the 

heptadentate ligands discussed here provides the alkali metal with a selection of potential 

donor sites and the resulting structures indicate that binding to the pendant phenol and a metal 

bound bridging phenolate is preferential to chelation to phenolate pairs. 

 

Supporting information 

Details of the X-ray crystal structure determinations may be obtained from the Director, 

CCDC, 12 Union Road, Cambridge, CB2 1EZ, UK (fax +44-1223-336033; e-mail 

deposit@ccdc.cam.ac.uk or www:http://ccdc.cam.ac.uk) on request quoting the depository 

numbers ccdc 693152 – 693156 and 761468 
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Footnotes  

 

** H6TrenSal: tris-((2-hydroxybenzyl)-aminoethylamine.  This compound is derived 

from a Schiff base species (TrenSal).  The H6 prefix is used to show that the three 

imine groups have been fully hydrogenated   

 

*** Numerous attempts to generate crystals of independent complexes were attempted.  

Many were badly disordered.  One such structure ccdc993154 has been deposited in 

the database.  It would seem that the method reported here used to prepare this 

complex generates a mixture.  There are parallels with the syntheses of 

[(H6TrenSal)Ni] NO3 and [(H6TrenSal)Ni(OH2)] NO3 [3]. 

 

**** the formula given is for a 50:25:25 ratio of the three complexes 
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