7,696 research outputs found

    Long-range structural regularities and collectivity of folded proteins

    Get PDF
    Coarse-grained network models of proteins successfully predict equilibrium properties related to collective modes of motion. In this study, the network construction strategies and their systematic application to proteins are used to explain the role of network models in defining the collective properties of the system. The analysis is based on the radial distribution function, a newly defined angular distribution function and the spectral dimensions of a large set of globular proteins. Our analysis shows that after reaching a certain threshold for cut-off distance, network construction has negligible effect on the collective motions and the fluctuation patterns of the residues

    Interpretation of the vibrational spectra of glassy polymers using coarse-grained simulations

    Get PDF
    The structure and vibrational density of states (VDOS) of polymer glasses are investigated using numerical simulations based on the classical Kremer-Grest bead-spring model. We focus on the roles of chain length and bending stiffness, the latter being set by imposing three-body angular potentials along chain backbones. Upon increasing the chain length and bending stiffness, structural reorganisation leads to volumetric expansion of the material and build-up of internal stresses. The VDOS has two dominant bands: a low frequency one corresponding to inter- and intra-chain non-bonding interactions and a high frequency one corresponding principally to vibrations of bonded beads that constitute skeletal chain backbones. Upon increasing the steepness of the angular potential, vibrational modes associated with chain bending gradually move from the low-frequency to the high-frequency band. This redistribution of modes is reflected in a reduction of the so-called Boson peak upon increasing chain stiffness. Remarkably, the finer structure and the peaks of the high-frequency band, and their variations with stiffness, can, for short chains, be explained using an analytical solution derived for a model triatomic molecule. For longer chains, the qualitative evolution of the VDOS with chain stiffness is similar, although the distinct peaks observed for short chains become increasingly smoothed-out. Our findings can be used to guide a systematic approach to interpretation of Brillouin and Raman scattering spectra of glassy polymers in future work, with applications in polymer processing diagnostics.Comment: To appear in Macromolecule

    Emergence of foams from the breakdown of the phase field crystal model

    Full text link
    The phase field crystal (PFC) model captures the elastic and topological properties of crystals with a single scalar field at small undercooling. At large undercooling, new foam-like behavior emerges. We characterize this foam phase of the PFC equation and propose a modified PFC equation that may be used for the simulation of foam dynamics. This minimal model reproduces von Neumann's rule for two-dimensional dry foams, and Lifshitz-Slyozov coarsening for wet foams. We also measure the coordination number distribution and find that its second moment is larger than previously-reported experimental and theoretical studies of soap froths, a finding that we attribute to the wetness of the foam increasing with time.Comment: 4 pages, 4 figure

    More than one dynamic crossover in protein hydration water

    Full text link
    Studies of liquid water in its supercooled region have led to many insights into the structure and behavior of water. While bulk water freezes at its homogeneous nucleation temperature of approximately 235 K, for protein hydration water, the binding of water molecules to the protein avoids crystallization. Here we study the dynamics of the hydrogen bond (HB) network of a percolating layer of water molecules, comparing measurements of a hydrated globular protein with the results of a coarse-grained model that has been shown to successfully reproduce the properties of hydration water. With dielectric spectroscopy we measure the temperature dependence of the relaxation time of protons charge fluctuations. These fluctuations are associated to the dynamics of the HB network of water molecules adsorbed on the protein surface. With Monte Carlo (MC) simulations and mean--field (MF) calculations we study the dynamics and thermodynamics of the model. In both experimental and model analyses we find two dynamic crossovers: (i) one at about 252 K, and (ii) one at about 181 K. The agreement of the experiments with the model allows us to relate the two crossovers to the presence of two specific heat maxima at ambient pressure. The first is due to fluctuations in the HB formation, and the second, at lower temperature, is due to the cooperative reordering of the HB network

    S-Net for multi-memory multicores

    Get PDF
    Copyright ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in Proceedings of the 5th ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming: http://doi.acm.org/10.1145/1708046.1708054S-Net is a declarative coordination language and component technology aimed at modern multi-core/many-core architectures and systems-on-chip. It builds on the concept of stream processing to structure dynamically evolving networks of communicating asynchronous components. Components themselves are implemented using a conventional language suitable for the application domain. This two-level software architecture maintains a familiar sequential development environment for large parts of an application and offers a high-level declarative approach to component coordination. In this paper we present a conservative language extension for the placement of components and component networks in a multi-memory environment, i.e. architectures that associate individual compute cores or groups thereof with private memories. We describe a novel distributed runtime system layer that complements our existing multithreaded runtime system for shared memory multicores. Particular emphasis is put on efficient management of data communication. Last not least, we present preliminary experimental data
    corecore