9,614 research outputs found

    Mechanism design for decentralized online machine scheduling

    Get PDF
    Traditional optimization models assume a central decision maker who optimizes a global system performance measure. However, problem data is often distributed among several agents, and agents take autonomous decisions. This gives incentives for strategic behavior of agents, possibly leading to sub-optimal system performance. Furthermore, in dynamic environments, machines are locally dispersed and administratively independent. Examples are found both in business and engineering applications. We investigate such issues for a parallel machine scheduling model where jobs arrive online over time. Instead of centrally assigning jobs to machines, each machine implements a local sequencing rule and jobs decide for machines themselves. In this context, we introduce the concept of a myopic best response equilibrium, a concept weaker than the classical dominant strategy equilibrium, but appropriate for online problems. Our main result is a polynomial time, online mechanism that |assuming rational behavior of jobs| results in an equilibrium schedule that is 3.281-competitive with respect to the maximal social welfare. This is only lightly worse than state-of-the-art algorithms with central coordination

    SELFISHMIGRATE: A Scalable Algorithm for Non-clairvoyantly Scheduling Heterogeneous Processors

    Full text link
    We consider the classical problem of minimizing the total weighted flow-time for unrelated machines in the online \emph{non-clairvoyant} setting. In this problem, a set of jobs JJ arrive over time to be scheduled on a set of MM machines. Each job jj has processing length pjp_j, weight wjw_j, and is processed at a rate of ℓij\ell_{ij} when scheduled on machine ii. The online scheduler knows the values of wjw_j and ℓij\ell_{ij} upon arrival of the job, but is not aware of the quantity pjp_j. We present the {\em first} online algorithm that is {\em scalable} ((1+\eps)-speed O(1ϵ2)O(\frac{1}{\epsilon^2})-competitive for any constant \eps > 0) for the total weighted flow-time objective. No non-trivial results were known for this setting, except for the most basic case of identical machines. Our result resolves a major open problem in online scheduling theory. Moreover, we also show that no job needs more than a logarithmic number of migrations. We further extend our result and give a scalable algorithm for the objective of minimizing total weighted flow-time plus energy cost for the case of unrelated machines and obtain a scalable algorithm. The key algorithmic idea is to let jobs migrate selfishly until they converge to an equilibrium. Towards this end, we define a game where each job's utility which is closely tied to the instantaneous increase in the objective the job is responsible for, and each machine declares a policy that assigns priorities to jobs based on when they migrate to it, and the execution speeds. This has a spirit similar to coordination mechanisms that attempt to achieve near optimum welfare in the presence of selfish agents (jobs). To the best our knowledge, this is the first work that demonstrates the usefulness of ideas from coordination mechanisms and Nash equilibria for designing and analyzing online algorithms

    Smooth Inequalities and Equilibrium Inefficiency in Scheduling Games

    Full text link
    We study coordination mechanisms for Scheduling Games (with unrelated machines). In these games, each job represents a player, who needs to choose a machine for its execution, and intends to complete earliest possible. Our goal is to design scheduling policies that always admit a pure Nash equilibrium and guarantee a small price of anarchy for the l_k-norm social cost --- the objective balances overall quality of service and fairness. We consider policies with different amount of knowledge about jobs: non-clairvoyant, strongly-local and local. The analysis relies on the smooth argument together with adequate inequalities, called smooth inequalities. With this unified framework, we are able to prove the following results. First, we study the inefficiency in l_k-norm social costs of a strongly-local policy SPT and a non-clairvoyant policy EQUI. We show that the price of anarchy of policy SPT is O(k). We also prove a lower bound of Omega(k/log k) for all deterministic, non-preemptive, strongly-local and non-waiting policies (non-waiting policies produce schedules without idle times). These results ensure that SPT is close to optimal with respect to the class of l_k-norm social costs. Moreover, we prove that the non-clairvoyant policy EQUI has price of anarchy O(2^k). Second, we consider the makespan (l_infty-norm) social cost by making connection within the l_k-norm functions. We revisit some local policies and provide simpler, unified proofs from the framework's point of view. With the highlight of the approach, we derive a local policy Balance. This policy guarantees a price of anarchy of O(log m), which makes it the currently best known policy among the anonymous local policies that always admit a pure Nash equilibrium.Comment: 25 pages, 1 figur

    The Price of Anarchy for Minsum Related Machine Scheduling

    Get PDF
    We address the classical uniformly related machine scheduling problem with minsum objective. The problem is solvable in polynomial time by the algorithm of Horowitz and Sahni. In that solution, each machine sequences its jobs shortest first. However when jobs may choose the machine on which they are processed, while keeping the same sequencing rule per machine, the resulting Nash equilibria are in general not optimal. The price of anarchy measures this optimality gap. By means of a new characterization of the optimal solution, we show that the price of anarchy in this setting is bounded from above by 2. We also give a lower bound of e/(e-1). This complements recent results on the price of anarchy for the more general unrelated machine scheduling problem, where the price of anarchy equals 4. Interestingly, as Nash equilibria coincide with shortest processing time first (SPT) schedules, the same bounds hold for SPT schedules. Thereby, our work also fills a gap in the literature

    Games and Mechanism Design in Machine Scheduling – An Introduction

    Get PDF
    In this paper, we survey different models, techniques, and some recent results to tackle machine scheduling problems within a distributed setting. In traditional optimization, a central authority is asked to solve a (computationally hard) optimization problem. In contrast, in distributed settings there are several agents, possibly equipped with private information that is not publicly known, and these agents need to interact in order to derive a solution to the problem. Usually the agents have their individual preferences, which induces them to behave strategically in order to manipulate the resulting solution. Nevertheless, one is often interested in the global performance of such systems. The analysis of such distributed settings requires techniques from classical Optimization, Game Theory, and Economic Theory. The paper therefore briefly introduces the most important of the underlying concepts, and gives a selection of typical research questions and recent results, focussing on applications to machine scheduling problems. This includes the study of the so-called price of anarchy for settings where the agents do not possess private information, as well as the design and analysis of (truthful) mechanisms in settings where the agents do possess private information.computer science applications;

    Decentralization and Mechanism Design for Online Machine Scheduling

    Get PDF
    We study the online version of the classical parallel machine scheduling problem to minimize the total weighted completion time from a new perspective: We assume a strategic setting, where the data of each job j, namely its release date r(j) , its processing time p(j) and its weight w(j) is only known to the job itself, but not to the system. Furthermore, we assume a decentralized setting, where jobs choose the machine on which they want to be processed themselves. We study this setting from the perspective of algorithmic mechanism design and present a polynomial time decentralized online scheduling mechanism that induces rational jobs to select their machine in such a way that the resulting schedule is 3.281-competitive. The mechanism deploys an online payment scheme that induces rational jobs to truthfully report about their private data: with respect to release dates and processing times, truthfully reporting is a dominant strategy equilibrium, whereas truthfully reporting the weights is a myopic best response equilibrium. We also show that the local scheduling policy used in the mechanism cannot be extended to a mechanism where truthful reports with respect to weights constitute a dominant strategy equilibrium.operations research and management science;

    Scheduling Games with Machine-Dependent Priority Lists

    Full text link
    We consider a scheduling game in which jobs try to minimize their completion time by choosing a machine to be processed on. Each machine uses an individual priority list to decide on the order according to which the jobs on the machine are processed. We characterize four classes of instances in which a pure Nash equilibrium (NE) is guaranteed to exist, and show, by means of an example, that none of these characterizations can be relaxed. We then bound the performance of Nash equilibria for each of these classes with respect to the makespan of the schedule and the sum of completion times. We also analyze the computational complexity of several problems arising in this model. For instance, we prove that it is NP-hard to decide whether a NE exists, and that even for instances with identical machines, for which a NE is guaranteed to exist, it is NP-hard to approximate the best NE within a factor of 2−1m−ϵ2-\frac{1}{m}-\epsilon for all ϵ>0\epsilon>0. In addition, we study a generalized model in which players' strategies are subsets of resources, each having its own priority list over the players. We show that in this general model, even unweighted symmetric games may not have a pure NE, and we bound the price of anarchy with respect to the total players' costs.Comment: 19 pages, 2 figure

    Makespan Minimization via Posted Prices

    Full text link
    We consider job scheduling settings, with multiple machines, where jobs arrive online and choose a machine selfishly so as to minimize their cost. Our objective is the classic makespan minimization objective, which corresponds to the completion time of the last job to complete. The incentives of the selfish jobs may lead to poor performance. To reconcile the differing objectives, we introduce posted machine prices. The selfish job seeks to minimize the sum of its completion time on the machine and the posted price for the machine. Prices may be static (i.e., set once and for all before any arrival) or dynamic (i.e., change over time), but they are determined only by the past, assuming nothing about upcoming events. Obviously, such schemes are inherently truthful. We consider the competitive ratio: the ratio between the makespan achievable by the pricing scheme and that of the optimal algorithm. We give tight bounds on the competitive ratio for both dynamic and static pricing schemes for identical, restricted, related, and unrelated machine settings. Our main result is a dynamic pricing scheme for related machines that gives a constant competitive ratio, essentially matching the competitive ratio of online algorithms for this setting. In contrast, dynamic pricing gives poor performance for unrelated machines. This lower bound also exhibits a gap between what can be achieved by pricing versus what can be achieved by online algorithms
    • …
    corecore