
Decentralization and Mechanism Design for Online Machine

Scheduling †

Birgit Heydenreich∗ Rudolf Müller∗ Marc Uetz∗

February 9, 2006

Abstract

We study the online version of the classical parallel machine scheduling problem to minimize
the total weighted completion time – P | rj |

∑
wjCj in the classical notation of [5] – from a

new perspective: We assume a strategic setting, where the data of each job, namely its release
date rj , its processing time pj and its weight wj is only known to the job itself, but not to
the system. Furthermore, we assume a decentralized setting, where jobs choose the machine
on which they want to be processed themselves. We study this setting from the perspective of
algorithmic mechanism design and present a polynomial time decentralized online scheduling
mechanism that induces rational jobs to select their machine in such a way that the resulting
schedule is 3.281-competitive. The mechanism deploys an online payment scheme that induces
rational jobs to truthfully report about their private data: with respect to release dates and
processing times, truthfully reporting is a dominant strategy equilibrium, whereas truthfully
reporting the weights is a myopic best response equilibrium. We show that the local scheduling
policy used in the mechanism cannot be extended to a mechanism where truthful reports with
respect to weights constitute a dominant strategy equilibrium.

1 Introduction

We study the online version of the classical parallel machine scheduling problem to minimize the
total weighted completion time – P | rj |

∑
wj Cj in the notation of Graham et al. [5] – from a new

perspective: We assume a strategic setting, where the data of each job, namely its release date rj ,
its processing time pj and its weight wj is only known to the job itself, but not to the system. Any
job j is interested in being finished as early as possible, and the weight wj represents its indifference
cost for spending one additional unit of time waiting. While jobs may strategically report false
values (r̃j , p̃j , w̃j) in order to be scheduled earlier, the total social welfare is maximized whenever
the weighted sum of completion times

∑
wj Cj is minimized. Furthermore, we assume a restricted

communication paradigm, referred to as decentralization: Jobs may communicate with machines,
but neither do jobs communicate with each other, nor do machines communicate with each other.
In particular, there is no central coordination authority hosting all the data of the problem. This
leads to a setting where the jobs themselves must select the machine to be processed on, and any
machine sequences the jobs according to a (known) local sequencing policy.

∗Maastricht University, Quantitative Economics, P.O. Box 616, 6200 MD Maastricht, The Netherlands. E-mail:
{b.heydenreich,r.muller,m.uetz}@ke.unimaas.nl

†This research was supported by NWO grant 2004/03545/MaGW ‘Local Decisions in Decentralised Planning
Environments’.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Research Papers in Economics

https://core.ac.uk/display/6941816?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The problem P | rj |
∑

wj Cj is well-understood in the non-strategic setting with centralized
coordination. First, scheduling to minimize the weighted sum of completion times with release
dates, is NP-hard, even in the off-line case [9]. Second, no online algorithm for the single machine
problem can be better than 2-competitive [6] regardless of the question whether or not P=NP,
and lower bounds exist for parallel machines, too [15]. The best possible algorithm for the single
machine case is 2-competitive [1]. For the parallel machine setting, the currently best known online
algorithm is 2.61-competitive [3].

In the strategic setting, selfish agents trying to maximize their own benefit can do so by reporting
strategically about their private information, thus manipulating the resulting outcome. In the
model we propose, a job can report an arbitrary weight, an elongated processing time (e.g. by
adding unnecessary work), and it can artificially delay its true release date rj . We do not allow a
job to report a processing time shorter than pj , as this can easily be discovered and punished by
the system, e.g. by preempting the job after the declared processing time p̃j before it is actually
finished. Furthermore, as we assume that any job j comes into existence only at its release date rj ,
it obviously does not make sense that a job reports a release date smaller than the true value rj .

Our goal is to set up a mechanism that yields a reasonable overall performance with respect to
the objective function

∑
wj Cj . To that end, the mechanism needs to motivate the jobs to reveal

their private information truthfully. In addition, as we require decentralization, each machine must
be equipped with a local sequencing policy that is publicly known, and jobs must be induced to
select the machines in such a way that

∑
wj Cj is not too large. Known algorithms with the

best competitive ratio, e.g. [3, 10], crucially require central coordination to distribute jobs over
machines. An approach by Megow et al. [11], developed for an online setting with release dates
and stochastic job durations, however, turns out to be quite appropriate for being adopted to the
decentralized, strategic setting. In their paper, jobs are locally sequenced according to an online
variant of the well known WSPT rule [14], and arriving jobs are assigned to machines in order
to minimize an expression that approximates the (expected) increase of the objective value. This
algorithm achieves a competitive ratio of 3.281. The mechanism we propose develops their idea
further: by introducing appropriate payments, jobs are induced to not only truthfully report their
private data, but also to select those machines that minimize the immediate increase of the objective
value. This way, we obtain the same competitive ratio of 3.281, but in the strategic, decentralized
setting.

Related Work. Mechanism design in combination with the design of approximation algorithms
for scheduling problems has been studied, e.g., by Nisan and Ronen [12], Archer and Tardos [2], and
Kovacs [7]. In those papers, not the jobs but the machines are the selfishly behaving parts of the
system, and the private information is the processing speed of the machine. A scheduling model
where the jobs are the selfish agents of the system has been studied by Porter [13]. The paper
addresses preemptive scheduling on a single machine, where the private data of each job consists
of a release date, its processing time, its weight, and a deadline. The objective function is the sum
of the weights of all jobs that are completed by their deadline. Porter proposes a ((1 +

√
k)2 + 1)-

competitive incentive compatible mechanism and proves that this is best possible for deterministic
mechanisms that satisfy certain conditions. Here, k = maxi,j(wjpi)/(pjwi) is the maximum ratio
of the value densities of two jobs, where the value density of job j is defined as weight divided by
processing time wj/pj .

Contribution. We present a polynomial time, decentralized online mechanism, called De-
centralized LocalGreedyMechanism, for the strategic and decentralized setting of the online
scheduling problem P | rj |

∑
wj Cj . Thereby, we provide also a new algorithm for the non-strategic,

centralized setting, that is inspired by the MinIncrease Algorithm of [11], but improves on the

2

latter in terms of simplicity. We show that the Decentralized LocalGreedy Mechanism is
3.281-competitive which coincides with the bound that is known for the non-strategic, centralized
setting in [10, 11].

As usual in mechanism design, our Decentralized LocalGreedy Mechanism defines pay-
ments that have to be made by the jobs for being processed. Naturally, we require from an online
mechanism that also the payments are computed online. Hence they can be completely settled by
the time at which a job leaves the system. The payments in our mechanism induce the jobs to
select ‘the right’ machines. Intuitively, the mechanism uses the payments to mimic a correspond-
ing LocalGreedy online algorithm in the classical (non-strategic, centralized) parallel machine
setting P | rj |

∑
wj Cj . We show that the payments result in a balanced budget. Moreover, the

payments induce rational jobs to truthfully report about their private data. With respect to release
dates and processing times, truthfulness is a dominant strategy equilibrium. With respect to the
weights, truthful reports are myopic best responses (in a sense to be made precise later). We show
that there does not exist a payment scheme extending the allocation rule of the Decentralized
LocalGreedy Mechanism to a mechanism where truthful reporting of all private information is
a dominant strategy equilibrium.

The paper is organized as follows. We formalize the model and introduce the required notation
in Section 2. In Section 3 the LocalGreedy algorithm is defined. In Section 4, this algorithm is
adapted to the strategic setting and extended by a payment scheme yielding the Decentralized
LocalGreedyMechanism. Moreover, our main results are presented in that section. We analyze
the performance of the resulting mechanism in Section 5, prove the mentioned negative result in
Section 6 and conclude with a short discussion in Section 7.

2 Model and Notation

The considered problem is online scheduling with non-trivial release dates on parallel machines,
with the objective to minimize the weighted sum of completion times, P | rj |

∑
wj Cj . We are

given a set of jobs J = {1, . . . , n}, where each job needs to be processed on any of the parallel,
identical machines from the set M = {1, . . . ,m}. Each job j is viewed as a selfish agent and has the
following private information: a release date rj ≥ 0, a processing time pj > 0, and an indifference
cost, or weight, which we denote by wj ≥ 0. The release date denotes the time when the job comes
into existence, whereas the weight represents the cost to a job for one additional unit of time spent
waiting.

Without loss of generality, we assume that the jobs are numbered in order of their release dates,
i.e., j < k ⇒ rj ≤ rk. The triple (rj , pj , wj) is also denoted as the type of a job, and we use the
shortcut notation tj = (rj , pj , wj). By T = R+

0 ×R+×R+
0 we denote the space of possible types of

each job.

Definition 1. A decentralized online scheduling mechanism is a procedure that works as follows:

1. Each job j has a release date rj, but may pretend to come into existence at any time r̃j ≥ rj.
At that chosen release date, the job communicates to every machine reports w̃j and p̃j (which
may differ from its true type).

2. Machines communicate on the basis of that information a (tentative) completion time Ĉj and
a (tentative) payment π̂j to the job. This information is tentative due to the online situation.
Ĉj and π̂j can only change if later another job chooses the same machine.

3. Based on this response, the job chooses a machine. This choice is binding. The entire com-
munication takes place at one point in time, namely r̃j.

3

4. There is no communication at all between machines or between jobs.

5. Depending on later arrivals of jobs, machines may revise Ĉj and π̂j. Altogether, the inter-
action between jobs and machines as well as their local decision making leads to an (ex-post)
completion time Cj and an (ex-post) payment πj of each job.

Next, we define a property of the payments in a decentralized online scheduling mechanism.

Definition 2. If in a decentralized online scheduling mechanism for every job j payments to and
from j are only made between time r̃j and time Cj, then we call the payment scheme of the mech-
anism an online payment scheme.

We assume that each job j prefers a lower completion time to a higher one and model this by
the valuation vj(Cj |tj) = −wj Cj . We assume quasi-linear utilities, uj(Cj , πj | tj) = vj(Cj | tj)−πj ,
which is in our case equal to −wj Cj − πj . In this model, uj is always negative. Therefore, we
assume that a job has a constant and sufficiently large utility for ‘being processed at all’. Carrying
this over to the notation would add a constant to uj . Since this does not change the jobs’ behavior
when maximizing their utility, we will omit the constant and continue working with uj . For the sake
of simplicity, we drop the dependence of the mechanism in our notation. Note that the total social
welfare is maximized whenever the weighted sum of completion times

∑
j∈J wj Cj is minimum,

which is again independent of whether we do or do not carry constants with us.
The messages jobs send to machines are called actions, since they constitute the strategic actions

jobs can take in the non-cooperative game induced by the mechanism. A strategy of a job j maps
each type to an action for every possible state of the system in which the job is required to take
some action. A strategy profile is a vector (s1, . . . , sn) of strategies, one for each job. Given a
mechanism, a strategy profile, and a realization of types t, we denote by uj(s, t) the utility that
agent j receives.

Definition 3. A strategy profile s = (s1, . . . , sn) is called a dominant strategy equilibrium if for
all jobs j ∈ J , all types t of the jobs, all strategies s̃−j of the other jobs, and all strategies s̃j that j
could play instead of sj,

uj((sj , s̃−j), t) ≥ uj((s̃j , s̃−j), t).

We could simplify our notation if we would restrict ourselves to revelation mechanisms, that is
mechanisms in which the only action of a job is to report its type. However, a decentralized online
scheduling mechanism requires that jobs decide themselves on which machine they are scheduled.
Since these decisions are likely to influence the utility of the jobs, they have to be modelled as
actions in the game. Therefore, it is not sufficient to restrict oneself to revelation mechanisms.

We will see that the mechanism proposed in this paper does not have a dominant strategy
equilibrium, whatever modification we might apply to the payment scheme. However, a weaker
equilibrium concept applies, which we define next. That definition uses the concept of a tentative
utility, i.e. the utility a job would have if it was the last to be accepted to its chosen machine.

Definition 4. Given a decentralized, online scheduling mechanism, a strategy profile s, and type
profile t. Let Ĉj and π̂j denote the tentative completion time and the tentative payment at time r̃j

from Definition 1 if the jobs have types t and play strategies according to s. Then we let ûj(s, t) :=
Ĉwj − π̂j denote the tentative utility at time r̃j.

If s and t are clear from the context, we will use ûj as short notation.

4

Definition 5. A strategy profile (s1, . . . , sn) is called a myopic best response equilibrium, if for
all jobs j ∈ J , all types t of the jobs, all strategies s̃−j of the other jobs and all strategies s̃j that j
could play instead of sj,

ûj((sj , s̃−j), t) ≥ ûj((s̃j , s̃−j), t).

2.1 Critical jobs

For convenience of presentation, we additionally make the following assumption for the main part
of the paper. Fix some constant 0 < α ≤ 1 that will be discussed later. Let us call jobs critical if
rj < αpj . Intuitively, a job is critical if it is long and appears comparably early in the system. The
assumption we make is that such critical jobs do not exist, that is

rj ≥ α pj for all jobs j ∈ J .

That means that long jobs cannot appear very early in the system. This assumption can be seen
as a tribute to the desired performance guarantee, and in fact, it is well known that critical jobs
must not be scheduled early in order to achieve constant competitive ratios [1, 10]. We point out
however, that this assumption is only made due to cosmetic reasons. In Section 5.1, we show how
to relax this assumption, and we discuss how critical jobs can be dealt with without leaving the
framework of decentralized online scheduling mechanisms or losing any of our results.

3 The LocalGreedy Algorithm

We next formulate an online scheduling algorithm that is inspired by the MinIncrease Algorithm
from Megow et al. [11]. For the time being, we assume that the job characteristics such as release
date rj , processing time pj and indifference cost wj are given. In the next section, we discuss how
to turn this algorithm into a mechanism for the strategic, decentralized setting that we aim at.

The idea of the algorithm is that each machine uses (an online version of) the well known
WSPT rule [14] locally. More precisely, each machine implements a priority queue containing the
not yet scheduled jobs that have been assigned to the machine. The queue is organized according
to WSPT, that is, jobs with higher ratio wj/pj have higher priority. In case of ties, jobs with
lower index have higher priority. As soon as the machine falls idle, the currently first job from this
priority queue is scheduled (if any). Given this local scheduling policy on each of the machines,
any arriving job is assigned to that machine were the increase in the objective

∑
wj Cj is minimal.

Algorithm 1: LocalGreedy algorithm

Local Sequencing Policy:
Whenever a machine becomes idle, it starts processing the job with highest (WSPT) priority among
all jobs assigned to it.

Assignment:
(1) At time rj job j arrives; the immediate increase of the objective

∑
wj Cj , given that j is assigned

to machine i, is
z(j, i) := wj

[
rj + bi(rj) +

∑

k∈H(j)
k→i
k<j

Sk≥rj

pk + pj

]
+ pj

∑

k∈L(j)
k→i
k<j

Sk>rj

wk.

(2) Job j is assigned to machine ij ∈ argmini∈M z(j, i) with minimum index.

5

In the formulation of the algorithm, we utilize some shortcut notation. We let j → i denote
the fact that job j is assigned to machine i. Let Sj be the time when job j eventually starts
being processed. For any job j, H(j) denotes the set of jobs that have higher priority than j,
H(j) = {k ∈ J |wkpj > wjpk} ∪ {k ≤ j |wkpj = wjpk}. Note that H(j) includes j, too. Similarly,
L(j) = J \H(j) denotes the set of jobs with lower priority. At a given point t in time, machine i
might be busy processing a job. We let bi(t) denote the remaining processing time of that job at
time t, i.e., at time t machine i will be blocked during bi(t) units of time for new jobs. If machine
i is idle at time t, we let bi(t) = 0.

Clearly, the LocalGreedy algorithm still makes use of central coordination in Step (2). In
the sequel we will introduce payments that allow to transform the algorithm into a decentralized
online scheduling mechanism.

4 Payments for Myopic Rational Jobs

The payments we introduce can be motivated as follows: A job j pays at the moment of its
placement on one of the machines an amount that compensates the decrease in utility of the
other jobs. The final payment of each job j resulting from this mechanism will then consist of the
immediate payment j has to make when selecting a machine and of the payments j gets when being
displaced by other jobs. We will prove that utility maximizing jobs have an incentive to report
truthfully and to choose the machine that the LocalGreedyAlgorithm would have selected,
too. Furthermore, the WSPT rule can be run locally on every machine and does not require
communication between the machines. We will see in the next section that this yields a constant-
factor approximation of the off-line optimum, given that the jobs behave rationally. The algorithm
including the payments is displayed below as the Decentralized LocalGreedyMechanism. Let
here the indices of the jobs be defined according to the reported release dates, i.e. j < k ⇒ r̃j ≤ r̃k.
Let H̃(j) and L̃(j) be defined analogously to H(j) and L(j) on the basis of the reported weights.

The DecentralizedLocalGreedyMechanism together with the stated payments results in
a balanced budget for the scheduler. That is, the payments paid and received by the jobs sum up
to zero, since every arriving job immediately makes its payment to the jobs that are displaced by
it. Notice that the payments are made online in the sense of Definition 2.

Theorem 6. Regard any type vector t, any strategy profile s and any job j such that j reports
(r̃j , p̃j , w̃j) and chooses machine m̃ ∈ M . Then changing the report to (r̃j , p̃j , wj) and choosing a
machine that maximizes its tentative utility at time r̃j does not decrease j’s tentative utility under
the Decentralized LocalGreedyMechanism.

Proof. We first regard the single machine case, i.e. m = 1. Suppose, at the arrival time r̃j of job j
jobs k1, k2, . . . , kr with corresponding reported processing times p̃1, p̃2, . . . , p̃r and reported weights
w̃1, w̃2, . . . , w̃r are queueing to be processed on the machine, but none of them has started being
processed yet. Without loss of generality let w̃1/p̃1 ≥ w̃2/p̃2 ≥ · · · ≥ w̃r/p̃r. Given the reported
processing time p̃j , job j could receive any position in front of, between or behind the already
present jobs in the priority queue by choosing its weight appropriately. Therefore, it has to decide
for every job ks, s ∈ {1, . . . , r}, whether it wants to be placed in front of ks or not. Displacing ks

would increase π̂j(1) by w̃sp̃j , whereas Ĉj(1) is decreased by p̃s. Thus, j ’s tentative utility changes
by wj p̃s − w̃sp̃j if j displaces ks compared to not displacing ks. Therefore, it is rational for j to
displace ks if and only if wj p̃s − w̃sp̃j > 0, which is equivalent to wj/p̃j > w̃s/p̃s. As the machine
schedules according to WSPT, j is placed at the position that maximizes its tentative utility when
reporting wj .

6

Algorithm 2: DecentralizedLocalGreedyMechanism

Local Sequencing Policy: Whenever a machine becomes idle, it starts processing the job with
highest (WSPT) priority among all available jobs queuing at this machine.

Assignment:

1. At time r̃j job j arrives and reports a weight w̃j and a processing time p̃j to all machines.

2. Every machine i computes

Ĉj(i) = r̃j + bi(r̃j) +
∑

k∈H̃(j)
k→i
k<j

Sk≥r̃j

p̃k + p̃j and π̂j(i) = p̃j

∑

k∈L̃(j)
k→i
k<j

Sk>r̃j

w̃k.

and informs j about both Ĉj(i) and π̂j(i).

3. Job j chooses a machine ij ∈ M . Its tentative utility for being queued at machine i is
ûj(i) := −wjĈj(i)− π̂j(i).

4. The job is queued at ij according to WSPT among all currently available jobs on ij whose processing
has not started yet. The payment π̂j(ij) has to be paid by j.

5. The (tentative) completion time for every job k ∈ L̃(j), k → ij , k < j, Sk > r̃j increases by p̃j due to
j ’s presence. As compensation, k receives a payment of w̃kp̃j .

For m > 1, recall that j can select a machine itself. As reporting the truth maximizes its
tentative utility on every single machine, and as j can then choose the machine that maximizes
its tentative utility among all machines, truth-telling and choosing a machine maximizing ûj will
maximize j ’s tentative utility.

Lemma 7. Consider any job j ∈ J . Then, under the Decentralized LocalGreedyMechanism,
for all reports of all other agents as well as all choices of machines of the other agents, the following
is true:
(a) If j reports w̃j = wj, then the tentative utility when queued at any of the machines will be
preserved over time, i.e. it equals j’s ex-post utility.
(b) If j reports w̃j = wj, then selecting the machine that the LocalGreedyAlgorithm would have
selected maximizes j’s ex-post utility.

Proof. (a) Note that whenever j’s tentative completion time changes, j is immediately compensated
for that by a payment. If w̃j = wj then the payment exactly equals the loss in utility.

(b) Follows from (a) and the fact that the machine chosen by the LocalGreedyAlgorithm
maximizes j’s tentative utility.

Theorem 8. Consider the restricted strategy space where all j ∈ J report w̃j = wj. Then the strat-
egy profile where all jobs j truthfully report r̃j = rj, p̃j = pj and choose a machine that maximizes
ûj is a dominant strategy equilibrium under the Decentralized LocalGreedyMechanism.

Proof. Let us start with m = 1. Suppose w̃j = wj , fix any pretended release date r̃j and regard
any p̃j > pj . Let uj denote j’s (ex-post) utility when reporting pj truthfully and let ũj be its
(ex-post) utility for reporting p̃j . As w̃j = wj , the ex-post utility equals in both cases the tentative
utility at decision point r̃j according to Lemma 7(a). Let us therefore regard the latter utilities.
Clearly, according to the WSPT-priorities, j’s position in the queue at the machine for report pj

7

will not be behind its position for report p̃j . Let us divide the jobs already queuing at the machine
at j’s arrival into three sets: Let J1 = {k ∈ J | k < j, Sk > r̃j , w̃k/p̃k ≥ wj/pj}, J2 = {k ∈ J | k <
j, Sk > r̃j , wj/pj > w̃k/p̃k ≥ wj/p̃j} and J3 = {k ∈ J | k < j, Sk > r̃j , wj/p̃j > w̃k/p̃k}. That is,
J1 comprises the jobs that are in front of j in the queue for both reports, J2 consists of the jobs
that are only in front of j when reporting p̃j and J3 includes only jobs that queue behind j for
both reports. Therefore,

ũj − uj = −
∑

k∈J1∪J2

wj p̃k −
∑

k∈J3

p̃jw̃k − wj p̃j −

−

∑

k∈J1

wj p̃k −
∑

k∈J2∪J3

pjw̃k − wjpj

=
∑

k∈J2

(pjw̃k − wj p̃k)−
∑

k∈J3

(p̃j − pj)w̃k − wj(p̃j − pj).

According to the definition of J2, the first term is smaller than or equal to zero. As p̃j > pj ,
the whole right hand side becomes non-positive. Therefore ũj ≤ uj , i.e. truthfully reporting pj

maximizes j’s ex-post utility on a single machine.
Let us now fix w̃j = wj and any p̃j ≥ pj and regard any false release date r̃j > rj . There

are two effects that can occur when arriving later than rj at the machine. Firstly, jobs queued at
the machine already at time rj may have been processed or may have started receiving service by
time r̃j . But, either j would have had to wait for those jobs anyway or it would have increased
its immediate utility at decision point rj by displacing a job and paying the compensation. So,
j cannot gain from this effect by lying. The second effect is that new jobs have arrived at the
machine between rj and r̃j . Those jobs either delay j’s completion time and j looses the payment
it could have received from those jobs by arriving earlier. Or the jobs do not delay j’s completion
time, but j has to pay the jobs for displacing them when arriving at r̃j . If j arrived at time rj ,
it would not have to pay for displacing such a job. Hence, j cannot gain from this effect either
and the immediate utility at decision point rj will be at least as large as its immediate utility at
decision point r̃j . Therefore, for a single machine, j maximizes its immediate utility at decision
point r̃j by choosing r̃j = rj . As w̃j = wj , it follows from Lemma 7(a) that choosing r̃j = rj also
maximizes the job’s ex-post utility on a single machine.

For m > 1 note that on every machine, the immediate utility of job j at decision point r̃j is
equal to its ex-post utility and that j can select a machine itself that maximizes its immediate
utility and therefore its ex-post utility. Therefore, given that w̃j = wj , a job’s ex-post utility is
maximized by choosing r̃j = rj , p̃j = pj and, according to Lemma 7(b), choosing a machine that
minimizes the immediate increase in the objective function.

Theorem 9. Given the types of all jobs, the strategy profile where each job j reports (r̃j , p̃j , w̃j) =
(rj , pj , wj) and chooses a machine maximizing its tentative utility ûj is a myopic best response
equilibrium under the Decentralized LocalGreedyMechanism.

Proof. Regard job j. According to the proof of Theorem 6, ûj on any machine is maximized by
reporting w̃j = wj for any r̃j and p̃j . According to Theorem 8 and Lemma 7(b), p̃j = pj , r̃j = rj

and choosing a machine that maximizes j’s tentative utility at time r̃j maximize j’s ex-post utility
if j truthfully reports w̃j = wj . According to Lemma 7(a) this ex-post utility is equal to ûj if j
reports w̃j = wj . Therefore, any job j maximizes ûj by truthful reports and choosing the machine
as claimed.

Given our restricted communication paradigm, jobs do not know at their arrival which jobs are
already queuing at the machines and what reports the already present jobs have made. Therefore

8

it is easy to see that for any non-truthful report of an arriving job about its weight, instances can
be constructed in which this report yields a strictly lower utility for the job than a truthful report
would have given. With arguments similar to those in the proof of Theorem 8, the same holds for
false reports about the processing time and the release date.

5 Performance of the Mechanism

As shown in Section 4, jobs have a motivation to report truthfully about their data: According to
Theorem 6, it is a myopic best response for a job j to report the true weight wj , no matter what
the other jobs do and no matter which p̃j and r̃j are reported by j itself. Given a true report of
wj , it was proven in Theorem 8 that reporting the true processing time and release date as well as
choosing a machine maximizing the tentative utility at arrival maximizes the job’s ex-post utility.
Therefore we will call a job rational if it truthfully reports wj , pj and rj and chooses a machine
maximizing its tentative utility ûj . In this section, we will show that if all jobs are rational, then
the Decentralized LocalGreedyMechanism is 3.281-competitive.

5.1 Handling Critical Jobs

Recall that from Section 2.1 on, we assumed that no critical jobs exist, i.e. that rj ≥ α pj for all
jobs j ∈ J . We will now relax this assumption. Without the assumption, the Decentralized-
LocalGreedyMechanism as stated above does not yet yield a constant approximation factor;
simple examples can be constructed in the same flavor as in [10]. In fact, it is well known that early
arriving jobs with large processing times have to be delayed [1, 10, 11]. In order to achieve a con-
stant competitive ratio, we also adopt this idea and use modified release dates as [10, 11]. To this
end, we define the modified release date of every job j ∈ J as r′j = max{rj , αpj}, where α ∈ (0, 1]
will later be chosen appropriately. For our decentralized setting, this means that a machine will
not admit any job j to its priority queue before time max{r̃j , αp̃j} if j arrives at time r̃j and
reports processing time p̃j . Moreover, machines refuse to provide information about the tentative
completion time and payment to a job before its modified release date (with respect to the job’s
reported data). Note that this modification is part of the local scheduling policy of every machine
and therefore does not restrict the required decentralization. Note further that any myopic rational
job j still reports w̃j = wj according to Theorem 6 and that a rational job reports p̃j = pj as well
as communicates to machines at the earliest opportunity, i.e. at time max{rj , αpj}, according to
the arguments in the proof of Theorem 8. Moreover, the aforementioned properties concerning the
balanced budget, the conservation of utility in the case of a truthfully reported weight, and the
online property of the payments still apply to the algorithm with modified release dates.

5.2 Proof of the Competitive Ratio

It is not a goal in itself to have a truthful mechanism, but to use the truthfulness in order to
achieve a reasonable overall performance in terms of the social welfare

∑
wj Cj . We derive a

constant competitive ratio for the Decentralized LocalGreedyMechanism by the following
theorem:

Theorem 10. Suppose every job is rational in the sense that it reports rj, pj, wj and selects
a machine that maximizes its tentative utility at arrival. Then the Decentralized Local-
GreedyMechanism is %-competitive, with % = 3.281.

9

Proof. A rational job communicates to the machines at time max{rj , αpj} and chooses a machine
ij that maximizes its utility upon arrival ûj(ij). That is, it selects a machine i that minimizes

−ûj(i) = wjĈj(i) + π̂j(i) = wj

[
r′j + bi(r′j) +

∑

k∈H(j)
k→i
k<j

Sk≥r′j

pk + pj

]
+ pj

∑

k∈L(j)
k→i
k<j

Sk>r′j

wk.

This, however, exactly equals the immediate increase of the objective value
∑

wj Cj that is due to
the addition of job j to the schedule. We now claim that we can express the objective value Z of
the resulting schedule as

Z =
∑

j∈J

−ûj(ij) ,

where ij is the machine selected by job j. Here, it is important to note that −ûj(ij) does not
express the total (ex-post) contribution of job j to

∑
wj Cj , but only the increase upon arrival

of j on machine ij . However, further contributions of job j to
∑

wj Cj only appear when job j
is displaced by some later arriving job with higher priority, say k. This contribution by job j to∑

wj Cj , however, will be accounted for when adding −ûk(ik).
Next, since we assume that any job maximizes its utility upon arrival, or equivalently mini-

mizes −ûj(i) when selecting a machine i, we can apply an averaging argument over the number of
machines, like in [11], to obtain:

Z ≤
∑

i∈J

1
m

m∑

i=1

−ûj(i) .

The remainder of the proof utilizes the definitions of ûj(i) and particulary the fact that, upon
arrival of job j on any of the machines i (at time r′j), machine i is blocked for time bi(r′j), which is
upper bounded by r′j/α. This upper bound is machine-independent, and follows from the definition
of r′j , since any job k in process at time r′j fulfills αpk ≤ r′k ≤ r′j . Furthermore, the proof utilizes a
lower bound on any (off-line) optimum schedule from Eastman et al. [4, Thm. 1]. The details are
moved to Appendix C. The resulting performance bound 3.281 is identical to the one of [11] (for
deterministic processing times), when α is (

√
17m2 − 2m + 1−m + 1)/(4m).

6 Negative Result

In this section we will show that by modifying the payment scheme it is not possible to turn
the Decentralized LocalGreedyMechanism into a mechanism that has a dominant strategy
equilibrium, in which all jobs truthfully report about their data.

First note that in any dominant strategy equilibrium, each job must select a machine that
maximizes its tentative utility at arrival. That is due to the fact that the choice of the machine
must also be optimal if all jobs arriving later than j choose their release date so large such that j’s
tentative utility is not changed any more.

Let us for a moment integrate the choice of the machine into the Decentralized Local-
GreedyMechanism, that is an arriving job reports its data and is centrally assigned to one of
the machines maximizing its tentative utility according to the reports made. The resulting mech-
anism is a direct revelation mechanism that differs from the LocalGreedyAlgorithm only in
the fact that jobs have to report their types. Therefore, it is enough to prove that the Local-
GreedyAlgorithm cannot be completed by a payment scheme to a truthful mechanism, i.e. a

10

mechanism in which truth-telling is a dominant strategy equilibrium. To illustrate the latter, we
use the following necessary condition formulated by Lavi et al. [8].

Definition 11. (Weak Monotonicity) Let vj(A(t̃)|tj) denote the valuation of job j for a schedule
that results from allocation algorithm A when type vector t̃ is reported and j has the true type tj.
Allocation algorithm A satisfies weak monotonicity if for any agent j ∈ J , every fixed report vector
of the other agents t̃−j and every pair of possible types t

(1)
j and t

(2)
j

vj(A(t̃−j , t
(1)
j)|t(1)

j)− vj(A(t̃−j , t
(1)
j)|t(2)

j) ≥ vj(A(t̃−j , t
(2)
j)|t(1)

j)− vj(A(t̃−j , t
(2)
j)|t(2)

j). (1)

Lemma 12. (Lavi, Mu’alem, and Nisan [8]) Let A be an allocation algorithm. If there is a payment
scheme π such that A together with π is a truthful mechanism, then A satisfies weak monotonicity.

This result is now applied to our model. Lemma13 formulates a necessary condition for truth-
fulness in our setting.

Lemma 13. For a job j ∈ J and fixed reports t̃−j by the other jobs, let A(t̃−j , t̃j) denote the
resulting schedule if j reports t̃j. Let Cj(A(t̃−j , t̃j)) be the corresponding (ex-post) completion time
of j in that schedule. Then A satisfies weak monotonicity in the described model only if it satisfies

w
(1)
j < w

(2)
j ⇒ Cj(A(t̃−j , (rj , pj , w

(1)
j))) ≥ Cj(A(t̃−j , (rj , pj , w

(2)
j)))

∀ j ∈ J, ∀ t̃−j ∈ Tn−1, ∀w
(1)
j , w

(2)
j ≥ 0, ∀pj > 0, ∀rj ≥ 0.

Proof. See Appendix A.

The above condition is in fact equivalent to the notion of decreasing work curves as formulated
by Archer and Tardos [2] for the case with one-dimensional types. An example in Appendix B
shows that the LocalGreedyAlgorithm does not satisfy weak monotonicity, and therefore does
not allow a payment scheme that extends the algorithm to a mechanism where truth-telling is a
dominant strategy equilibrium. Let us summarize this.

Theorem 14. There does not exist a payment scheme that extends the LocalGreedy algorithm
to a truthful mechanism. Therefore, it is not possible to turn the Decentralized LocalGreedy
Mechanism into a mechanism with a dominant strategy equilibrium in which all jobs report truthfully
by only modifying the payment scheme.

Proof. Use Lemma 13 and the example in Appendix B.

7 Discussion

The Decentralized LocalGreedyMechanism induces rational jobs to report truthfully about
their data, where this motivation is ’myopic’ with respect to the weight and a dominant strat-
egy equilibrium in the restricted strategy space where all jobs report their true weight. However,
it would be desirable to define a decentralized online scheduling mechanism such that there is a
dominant strategy equilibrium in which all jobs report all their data truthfully. Furthermore, the
desired mechanism should yield a constant competitive ratio for all such equilibria. It remains
an open question, whether such a mechanism exists. As we have seen in Section 6, the Local-
GreedyAlgorithm cannot be extended by a payment scheme such that the resulting mechanism
has the described properties.

11

References

[1] E. J. Anderson and C. N. Potts. Online scheduling of a single machine to minimize total weighted
completion time. Mathematics of Operations Research, 29(3):686–697, August 2004.

[2] A. Archer and E. Tardos. Truthful mechanisms for one-parameter agents. In Proc. 42nd Annual
Symposium on Foundations of Computer Science, pages 482–491. IEEE Computer Society, 2001.

[3] J. R. Correa and M. R. Wagner. LP-based online scheduling: from single to parallel machines. In
M. Jünger and V. Kaibel, editors, Proc. 11th Conference on Integer Programming and Combinatorial
Optimization, volume 3509 of Lecture Notes in Computer Science, pages 196–209. 2005.

[4] W. L. Eastman, S. Even, and I. M. Isaacs. Bounds for the optimal scheduling of n jobs on m processors.
Management Science, 11:268–279, 1964.

[5] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and approximation
in deterministic sequencing and scheduling: A survey. Annals of Discrete Mathematics, 5:287–326, 1979.

[6] J. A. Hoogeveen and A. P. A. Vestjens. Optimal on-line algorithms for single machine scheduling. In
W. H. Cunningham, S. T. McCormick, and M. Queyranne, editors, Proc. 5th Conference on Integer
Programming and Combinatorial Optimization, volume 1084 of Lecture Notes in Computer Science,
pages 404–414. Springer, 1996.

[7] A. Kovacs. Fast monotone 3-approximation algorithm for scheduling related machines. In G. S. Brodal
and S. Leonardi, editors, Proc. 13th Annual European Symposium on Algorithms, Lecture Notes in
Computer Science. Springer, 2005, to appear.

[8] R. Lavi, A. Mu’alem, and N. Nisan. Towards a characterization of truthful combinatorial auctions. In
Proc. 44th Annual Symposium on Foundations of Computer Science, pages 574–583. IEEE Computer
Society, 2003.

[9] E. L. Lenstra, A. H. G. Rinnooy Kan, and P. Brucker. Complexity of machine scheduling problems.
Annals of Discrete Mathematics, 1:243–362, 1977.

[10] N. Megow and A. S. Schulz. On-line scheduling to minimize average completion time revisited. Opera-
tions Research Letters, 32:485–490, 2004.

[11] N. Megow, M. Uetz, and T. Vredeveld. Stochastic online scheduling on parallel machines. In G. Per-
siano and R. Solis-Oba, editors, Proc. Second International Workshop on Approximation and Online
Algorithms, volume 3351 of Lecture Notes in Computer Science, pages 167–180. 2005.

[12] N. Nisan and A. Ronen. Algorithmic mechanism design. Games and Economic Behavior, 35:166–196,
2001.

[13] R. Porter. Mechanism design for online real-time scheduling. Proc. of the ACM Conference on Electronic
Commerce (EC’04), 2004.

[14] W. Smith. Various optimizers for single stage production. Naval Research Logistics Quarterly, 3:59–66,
1956.

[15] A. P. A. Vestjens. On-line Machine Scheduling. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 1997.

Appendices

A Proof of Lemma13

Lemma 13. For a job j ∈ J and fixed reports t̃−j by the other jobs, let A(t̃−j , t̃j) denote the resulting
schedule if j reports t̃j. Let Cj(A(t̃−j , t̃j)) be the corresponding (ex-post) completion time of j in that

12

schedule. Then A satisfies weak monotonicity in the described model only if it satisfies

w
(1)
j < w

(2)
j ⇒ Cj(A(t̃−j , (rj , pj , w

(1)
j))) ≥ Cj(A(t̃−j , (rj , pj , w

(2)
j)))

∀ j ∈ J, ∀ t̃−j ∈ Tn−1, ∀w
(1)
j , w

(2)
j ≥ 0, ∀pj > 0, ∀rj ≥ 0.

Proof. Weak monotonicity is satisfied only if Equation 1 is satisfied for all possible pairs t
(1)
j and t

(2)
j . Let

w
(1)
j < w

(2)
j and define t

(1)
j := (rj , pj , w

(1)
j) and t

(2)
j := (rj , pj , w

(2)
j). Then Equation 1 implies

vj(A(t̃−j , (rj , pj , w
(1)
j))|(rj , pj , w

(1)
j))− vj(A(t̃−j , (rj , pj , w

(1)
j))|(rj , pj , w

(2)
j))

≥ vj(A(t̃−j , (rj , pj , w
(2)
j))|(rj , pj , w

(1)
j))− vj(A(t̃−j , (rj , pj , w

(2)
j))|(rj , pj , w

(2)
j))

Using the special structure of the valuation function in our model the above condition becomes:

−w
(1)
j Cj(A(t̃−j , (rj , pj , w

(1)
j))) + w

(2)
j Cj(A(t̃−j , (rj , pj , w

(1)
j)))

+w
(1)
j Cj(A(t̃−j , (rj , pj , w

(2)
j)))− w

(2)
j Cj(A(t̃−j , (rj , pj , w

(2)
j))) ≥ 0

⇔ (w(1)
j − w

(2)
j)[Cj(A(t̃−j , (rj , pj , w

(2)
j)))− Cj(A(t̃−j , (rj , pj , w

(1)
j)))] ≥ 0

⇔ Cj(A(t̃−j , (rj , pj , w
(2)
j)))− Cj(A(t̃−j , (rj , pj , w

(1)
j))) ≥ 0 ,

where the last equivalence follows from w
(2)
j < w

(1)
j .

B The LocalGreedy algorithm is not weakly monotone

Example 15. Let [w̃/p̃] denote a job with (reported) weight w̃ and (reported) processing time p̃. Suppose
that we have to schedule the following four jobs on two machines: [6/3], [5/4], j = [w̃/ 1

7], [20/4], where w̃ is a
parameter. Let all jobs have the common release date r > 4α, but let us assume that they nevertheless arrive
in the given order. (We could alternatively enforce this order by adding small but positive constants to some
of the release dates without changing the effect demonstrated below.)

Let us consider the LocalGreedy algorithm. Note that no job has to be delayed according to the
modified release dates. The first job [6/3] increases the objective value on both machines by the same
amount and is therefore scheduled on the first machine. The second job [5/4] is then assigned to the second
machine. We consider two values for the weight of j, namely w(1) = 1

14 and w(2) = 1
2 . In the first case the

weight over processing time ratio is 1
2 and therefore smaller than the respective ratios of the two jobs already

assigned to machines. Thus, j would be scheduled last on each of the machines according to the WSPT rule.
It would cause the following increases:

incr(j, 1) = (r +
1
7

+ 3)w(1)

incr(j, 2) = (r +
1
7

+ 4)w(1).

Therefore, j is assigned to the end of machine 1.
The second case for w(2) = 1

2 yields a ratio of 7
2 , which would place j first on both machines. The

respective increases are:

incr(j, 1) = (r +
1
7
)w(2) + 6 · 1

7

incr(j, 2) = (r +
1
7
)w(2) + 5 · 1

7
.

Job j would be scheduled on machine 2.
The last job [20/4] has a ratio larger than all the ratios of the present jobs. Therefore it would be

scheduled first on both machines. In both cases the total weight of jobs on the first machine is larger than

13

the total weight of jobs on the second machine. Therefore the increase in the objective value caused by the
last job is in both cases smaller on the second machine. Thus the job is scheduled on the second machine,
which increases j ’s completion time only in the second case. Thus, j is completed at time r + 3 + 1

7 when
reporting 1

14 and at time r + 4 + 1
7 when reporting 1

2 . Therefore, the MinIncrease Algorithm does not
satisfy weak monotonicity.

C Proof of Theorem 10

Theorem 10. Suppose every job is rational in reporting w̃j, p̃j, choosing its release date r̃j and selecting a
machine. Then the Decentralized LocalGreedyMechanism is %-competitive, with % = 3.281.

Proof. Recall that Z denotes the objective value of the final schedule produced by the Decentralized
LocalGreedyMechanism. Let ZOPT denote the value of the optimum off-line solution. We have already
argued that

Z ≤
∑

i∈J

1
m

m∑

i=1

−ûj(i) .

Next, recall that upon arrival of job j on any of the machines i (at time r′j), machine i is blocked for time
bi(r′j) ≤ r′j/α. Therefore we get, for any j,

1
m

m∑

i=1

−ûj(i) = wjr
′
j + wj

m∑

i=1

bi(r′j)
m

+ wj

m∑

i=1

∑

k∈H(j)
k→i
k<j

Sk≥r′j

pk

m
+ wjpj + pj

m∑

i=1

∑

k∈L(j)
k→i
k<j

Sk>r′j

wk

m

= wjr
′
j + wj

m∑

i=1

bi(r′j)
m

+ wj

∑

k∈H(j)
k<j

Sk≥r′j

pk

m
+ wjpj + pj

∑

k∈L(j)
k<j

Sk>r′j

wk

m

≤ wjr
′
j + wj

m∑

i=1

bi(r′j)
m

+ wj

∑

k∈H(j)
k<j

pk

m
+ wjpj + pj

∑

k∈L(j)
k<j

wk

m

≤ wjr
′
j + wj

r′j
α

+ wj

∑

k∈H(j)
k<j

pk

m
+ wjpj + pj

∑

k∈L(j)
k<j

wk

m
.

Thus,

Z ≤
∑

j∈J

wj(1 +
1
α

)r′j +
∑

j∈J

wj

∑

k∈H(j)
k<j

pk

m
+

∑

j∈J

wjpj +
∑

j∈J

pj

∑

k∈L(j)
k<j

wk

m

The last term can be rewritten as follows:
∑

j∈J

pj

∑

k∈L(j)
k<j

wk

m
=

∑

(j,k):
j∈H(k)

k<j

pj
wk

m
=

∑

(j,k):
k∈H(j)

j<k

pk
wj

m
=

∑

j∈J

wj

∑

k∈H(j)
k>j

pk

m
.

Therefore,

Z ≤
∑

j∈J

wj(1 +
1
α

)r′j +
∑

j∈J

wj

∑

k∈H(j)
k<j

pk

m
+

∑

j∈J

wjpj +
∑

j∈J

wj

∑

k∈H(j)
k>j

pk

m

=
∑

j∈J

wj(1 +
1
α

)r′j +
∑

j∈J

wj

∑

k∈H(j)

pk

m
+

m− 1
m

∑

j∈J

wjpj .

14

Now, we apply a lower bound on the optimal off-line schedule from [4, Thm. 1], namely

ZOPT ≥
∑

j∈J

wj

∑

k∈H(j)

pk

m
+

m− 1
2m

∑

j∈J

wjpj ,

yielding:

Z ≤ ZOPT +
∑

j∈J

wj(1 +
1
α

)r′j +
m− 1
2m

∑

j∈J

wjpj

≤ ZOPT +
∑

j∈J

wj(1 +
1
α

)(rj + αpj) +
m− 1
2m

∑

j∈J

wjpj

= ZOPT +
∑

j∈J

wj

[
(1 +

1
α

)rj + (1 + α +
m− 1
2m

)pj

]
,

where in the second inequality rj + αpj is used as an upper bound on r′j . Applying the trivial lower bound∑
j∈J wj(rj + pj) ≤ ZOPT , we get:

Z ≤ ZOPT + max
{

1 +
1
α

, 1 + α +
m− 1
2m

}
ZOPT

= 2ZOPT + max
{

1
α

, α +
m− 1
2m

}
ZOPT .

Therefore, we get the performance bound

% = 2 + max
{

1
α

, α +
m− 1
2m

}
.

This can now be optimized for α, which was already done in [10]. There it was shown that % < 3.281 for
α = (

√
17m2 − 2m + 1−m + 1)/(4m).

15

