155 research outputs found

    Dual-homing protection in IP-over-WDM networks

    Full text link

    Spare capacity allocation using shared backup path protection for dual link failures

    Get PDF
    This paper extends the spare capacity allocation (SCA) problem from single link failure [1] to dual link failures on mesh-like IP or WDM networks. The SCA problem pre-plans traffic flows with mutually disjoint one working and two backup paths using the shared backup path protection (SBPP) scheme. The aggregated spare provision matrix (SPM) is used to capture the spare capacity sharing for dual link failures. Comparing to a previous work by He and Somani [2], this method has better scalability and flexibility. The SCA problem is formulated in a non-linear integer programming model and partitioned into two sequential linear sub-models: one finds all primary backup paths first, and the other finds all secondary backup paths next. The results on five networks show that the network redundancy using dedicated 1+1+1 is in the range of 313-400%. It drops to 96-181% in 1:1:1 without loss of dual-link resiliency, but with the trade-off of using the complicated share capacity sharing among backup paths. The hybrid 1+1:1 provides intermediate redundancy ratio at 187-310% with a moderate complexity. We also compare the passive/active approaches which consider spare capacity sharing after/during the backup path routing process. The active sharing approaches always achieve lower redundancy values than the passive ones. These reduction percentages are about 12% for 1+1:1 and 25% for 1:1:1 respectively

    Software tools for a multilayer network design, Journal of Telecommunications and Information Technology, 2005, nr 3

    Get PDF
    Today’s long haul and metro high-speed networks are mainly based on synchronous digital hierarchy (SDH) or its American equivalent synchronous optical network (SONET) and wavelength division multiplex (WDM). On the other hand, the large amount of traffic growth during the last years has been caused mainly by Internet protocol (IP) traffic. Traditionally, the IP-router based networks and the cross-connect based synchronous networks are often planned and operated separately. However, in line with new developments such as generalized multiprotocol label switching (GMPLS), network providers begin to realize that the convergence of these two worlds promises significant benefits. A set of software tools to support the network designer has been developed and used on various kinds of real world network planning problems arising in the SDH/WDM context. This includes, among others, 1+1 protection planning, static restoration and dual homing issues. These tools are extended with additional features to handle aspects of the IP/SDH interplay in a GMPLS environment. The two main components are an AMPL based integer model (solved via CPLEX) and a heuristic implemented in C++

    Dynamic Virtual Network Restoration with Optimal Standby Virtual Router Selection

    Get PDF
    Title form PDF of title page, viewed on September 4, 2015Dissertation advisor: Deep MedhiVitaIncludes bibliographic references (pages 141-157)Thesis (Ph.D.)--School of Computing and Engineering and Department of Mathematics and Statistics. University of Missouri--Kansas City, 2015Network virtualization technologies allow service providers to request partitioned, QoS guaranteed and fault-tolerant virtual networks provisioned by the substrate network provider (i.e., physical infrastructure provider). A virtualized networking environment (VNE) has common features such as partition, flexibility, etc., but fault-tolerance requires additional efforts to provide survivability against failures on either virtual networks or the substrate network. Two common survivability paradigms are protection (proactive) and restoration (reactive). In the protection scheme, the substrate network provider (SNP) allocates redundant resources (e.g., nodes, paths, bandwidths, etc) to protect against potential failures in the VNE. In the restoration scheme, the SNP dynamically allocates resources to restore the networks, and it usually occurs after the failure is detected. In this dissertation, we design a restoration scheme that can be dynamically implemented in a centralized manner by an SNP to achieve survivability against node failures in the VNE. The proposed restoration scheme is designed to be integrated with a protection scheme, where the SNP allocates spare virtual routers (VRs) as standbys for the virtual networks (VN) and they are ready to serve in the restoration scheme after a node failure has been identified. These standby virtual routers (S-VR) are reserved as a sharedbackup for any single node failure, and during the restoration procedure, one of the S-VR will be selected to replace the failed VR. In this work, we present an optimal S-VR selection approach to simultaneously restore multiple VNs affected by failed VRs, where these VRs may be affected by failures within themselves or at their substrate host (i.e., power outage, hardware failures, maintenance, etc.). Furthermore, the restoration scheme is embedded into a dynamic reconfiguration scheme (DRS), so that the affected VNs can be dynamically restored by a centralized virtual network manager (VNM). We first introduce a dynamic reconfiguration scheme (DRS) against node failures in a VNE, and then present an experimental study by implementing this DRS over a realistic VNE using GpENI testbed. For this experimental study, we ran the DRS to restore one VN with a single-VR failure, and the results showed that with a proper S-VR selection, the performance of the affected VN could be well restored. Next, we proposed an Mixed-Integer Linear Programming (MILP) model with dual–goals to optimally select S-VRs to restore all VNs affected by VR failures while load balancing. We also present a heuristic algorithm based on the model. By considering a number of factors, we present numerical studies to show how the optimal selection is affected. The results show that the proposed heuristic’s performance is close to the optimization model when there were sufficient standby virtual routers for each virtual network and the substrate nodes have the capability to support multiple standby virtual routers to be in service simultaneously. Finally, we present the design of a software-defined resilient VNE with the optimal S-VR selection model, and discuss a prototype implementation on the GENI testbed.Introduction -- Literature survey -- Dynamic reconfiguration scheme in a VNE -- An experimental study on GpENI-VNI -- Optimal standby virtual router selection model -- Prototype design and implementation on GENI -- Conclusion and future work -- Appendix A. Resource Specification (RSpec) in GENI -- Appendix B. Optimal S-VR Selection Model in AMP

    Managed access dependability for critical services in wireless inter domain environment

    Get PDF
    The Information and Communications Technology (ICT) industry has through the last decades changed and still continues to affect the way people interact with each other and how they access and share information, services and applications in a global market characterized by constant change and evolution. For a networked and highly dynamic society, with consumers and market actors providing infrastructure, networks, services and applications, the mutual dependencies of failure free operations are getting more and more complex. Service Level Agreements (SLAs) between the various actors and users may be used to describe the offerings along with price schemes and promises regarding the delivered quality. However, there is no guarantee for failure free operations whatever efforts and means deployed. A system fails for a number of reasons, but automatic fault handling mechanisms and operational procedures may be used to decrease the probability for service interruptions. The global number of mobile broadband Internet subscriptions surpassed the number of broadband subscriptions over fixed technologies in 2010. The User Equipment (UE) has become a powerful device supporting a number of wireless access technologies and the always best connected opportunities have become a reality. Some services, e.g. health care, smart power grid control, surveillance/monitoring etc. called critical services in this thesis, put high requirements on service dependability. A definition of dependability is the ability to deliver services that can justifiably be trusted. For critical services, the access networks become crucial factors for achieving high dependability. A major challenge in a multi operator, multi technology wireless environment is the mobility of the user that necessitates handovers according to the physical movement. In this thesis it is proposed an approach for how to optimize the dependability for critical services in multi operator, multi technology wireless environment. This approach allows predicting the service availability and continuity at real-time. Predictions of the optimal service availability and continuity are considered crucial for critical services. To increase the dependability for critical services dual homing is proposed where the use of combinations of access points, possibly owned by different operators and using different technologies, are optimized for the specific location and movement of the user. A central part of the thesis is how to ensure the disjointedness of physical and logical resources so important for utilizing the dependability increase potential with dual homing. To address the interdependency issues between physical and logical resources, a study of Operations, Administrations, and Maintenance (OA&M) processes related to the access network of a commercial Global System for Mobile Communications (GSM)/Universal Mobile Telecommunications System (UMTS) operator was performed. The insight obtained by the study provided valuable information of the inter woven dependencies between different actors in the delivery chain of services. Based on the insight gained from the study of OA&M processes a technological neutral information model of physical and logical resources in the access networks is proposed. The model is used for service availability and continuity prediction and to unveil interdependencies between resources for the infrastructure. The model is proposed as an extension of the Media Independent Handover (MIH) framework. A field trial in a commercial network was conducted to verify the feasibility in retrieving the model related information from the operators' Operational Support Systems (OSSs) and to emulate the extension and usage of the MIH framework. In the thesis it is proposed how measurement reports from UE and signaling in networks are used to define virtual cells as part of the proposed extension of the MIH framework. Virtual cells are limited geographical areas where the radio conditions are homogeneous. Virtual cells have radio coverage from a number of access points. A Markovian model is proposed for prediction of the service continuity of a dual homed critical service, where both the infrastructure and radio links are considered. A dependability gain is obtained by choosing a global optimal sequence of access points. Great emphasizes have been on developing computational e cient techniques and near-optimal solutions considered important for being able to predict service continuity at real-time for critical services. The proposed techniques to obtain the global optimal sequence of access points may be used by handover and multi homing mechanisms/protocols for timely handover decisions and access point selections. With the proposed extension of the MIH framework a global optimal sequence of access points providing the highest reliability may be predicted at real-time
    corecore