50 research outputs found

    Coordinated Charging of Electric Vehicles for Congestion Prevention in the Distribution Grid

    Get PDF
    Distributed energy resources (DERs), like electric vehicles (EVs), can offer valuable services to power systems, such as enabling renewable energy to the electricity producer and providing ancillary services to the system operator. However, these new DERs may challenge the distribution grid due to insufficient capacity in peak hours. This paper aims to coordinate the valuable services and operation constraints of three actors: the EV owner, the Fleet operator (FO) and the Distribution system operator (DSO), considering the individual EV owner’s driving requirement, the charging cost of EV and thermal limits of cables and transformers in a distribution grid capacity market framework. Firstly, a theoretical market framework is described. Within this framework, FOs who represent their customer’s (EV owners) interests will centrally guarantee the EV owners’ driving requirements and procure the energy for their vehicles with lower cost. The congestion problem will be solved by a coordination between DSO and FOs through a distribution grid capacity market scheme. Then, a mathematical formulation of the market scheme is presented. Further, some case studies are shown to illustrate the effectiveness of the proposed solutions

    A Survey on Coordinated Charging Methods for Electric Vehicles

    Get PDF
    Electric vehicles (EVs) is regarded as one of the most effective ways to reduce oil and gas use. EVs (electric vehicles) have many advantages over ICEVs (internal combustion engine vehicles), including zero pollution, little noise, and exceptional energy efficiency. Even though an EV is known to have a three times higher fuel efficiency than an ICEV, the driving range is often significantly lower because batteries have a lower energy density than gasoline or diesel. Over the next few decades, it is anticipated that the number of electric vehicles will increase significantly due to concerns about pollution and technological advancements in the sector. Utilizing a variety of energy sources will boost energy security while reducing emissions and fuel usage. A paradigm shift has been observed with the switch from internal combustion to electric car technology. For electric vehicles to become widely used, a charging infrastructure must be developed. However, there is a cap on the amount of electricity that can be used to charge the vehicles in a charging station. Rearranging charging times, specifically charging coordination can help optimize the distribution of the available power among the vehicles. In this paper, a review of the various coordinated charging methods has been presented. A detailed comparison of the methods has been done

    Review of Congestion Management Methods for Distribution Networks with High Penetration of Distributed Energy Resources

    Get PDF
    This paper reviews the existing congestion management methods for distribution networks with high penetration of DERs documented in the recent research literatures. The congestion management methods for distribution networks reviewed can be grouped into two categories – market methods and direct control methods. The market methods consist of dynamic tariff, distribution capacity market, shadow price and flexible service market. The direct control methods are comprised of network reconfiguration, reactive power control and active power control. Based on the review of the existing methods, the authors suggest a priority list of the existing methods
    corecore