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Abstract—Conventional regulation reserves have fixed partic-
ipation factors and are thus not well suited to utilize differ-
entiated capabilities of ancillary service providers. This study
applies linear decision rules-based (LDR) control policies, which
effectively adapt the present participation factor in dependence
of the imbalance signal of previous time steps. The LDR-policies
are centrally computed using a robust optimization approach
which takes into account both the covariances of historic imbal-
ance signals and the operational flexibility of ancillary service
providers. The concept is then extended to the cooperation of
multiple cells. Two illustrating examples are presented to show
the functioning of the proposed LDR method.

Index Terms—Linear decision rules, Energy constrained re-
sources, System balancing.

I. INTRODUCTION

To reduce greenhouse-gas emissions and fossil-fuel depen-
dency in the power industry, renewable energy resources such
as wind and solar are widely advocated and their penetration
is increasing in the power system [1], [2]. However, these
intermittent energy resources bring challenges to the power
system operation due to their intrinsic uncertainty. Certainly in
a setting with reducing power system reserves from traditional
balancing resources [3]. Furthermore introducing intermittent
generation at the medium and low voltage level causes conges-
tion issues. On the other hand, new loads are introduced into
the system, such as electric vehicles and heat pumps, which
may be managed actively by demand response or other control
schemes [4]. In this study, these new loads are generally
referred to as distributed energy resources (DERs) and are
characterized by energy constrained electric power flexibility
[5].

Unlocking the sleeping flexibility of this residential energy
constrained flexibility promises a vast resource to mitigate
challenges related to the uncertainty of renewable energy gen-
eration, both at system and local level. Enabling this flexibility
comes at the cost of an increasingly complex control system,
characterized by a huge number of state and decision variables.
Possible control architectures studied in literature can be
described in terms of their control architecture (centralized,
distributed, decentralized) [6], their organizational structure
(vertical, horizontal), or coordination strategies (cooperative,

non-cooperative, direct, indirect, transactive, etc.) [7]. In par-
ticular it is often overlooked that even with conventional
hierarchical demand response schemes, the potential value of
DER flexibility as a local control resource is hardly addressed.
A conventional vertical, direct and centralized, approach of
system balancing is therefore not directly transferable, nor
appropriate to control a power system with a large number of
distributed energy resources. In this paper a control approach
is presented merging advantages of the control architectures
mentioned above.

The European FP7 project ELECTRA IRP [8] proposes and
develops a ”Web of Cells” (WoC) architecture for operating
the future power system. In this approach, the power systems
operation is divided into connected cells, each responsible for
their own balancing and voltage control [9], thus establishing
a robust, decentralized horizontal decomposition as opposed to
the conventional centralized and vertical system operation. The
use cases/controllers within the WoC concept are discussed in
section II.A.

While the demand side flexibility is becoming resource-
ful, we observe that, in contrast to conventional controllable
generation, a) demand side resources cannot continuously be
activated (limited energy flexibility), b) these resources require
much shorter planning and reservation periods, as they follow
other use patterns, and c) the locality of DER of connection
points can be traded off against the benefits of resource sharing
and aggregation. With respect to flexibility for balancing the
power system, the following issues thus need to be further
investigated: i) when energy constrained units (such as bat-
teries) provide control reserves, their limitation on the energy
capacity should be taken into account; ii) reserve allocation
should be close to operating time, considering the fluctuating
renewable energy resources; and iii) the trade-off between
local benefits of flexibility and shared utilization/aggregation
needs to be accounted for directly.

In this paper we propose a refinement of the WoC balancing
control, addressing i) and ii) by a robust power system reserve
allocation approach based on [10], combining a predictive
dispatch with optimal reactive control policies in form of
linear decision rules (LDR) [11]. Further, we address iii) by
proposing potential coordination strategies across cells. Our978-1-5090-3358-4/16/$31.00 c©2016 IEEE



approach thus exploits both spatial and temporal correlation
and smoothing effects of imbalance signals. Compared to
existing reserve operation, the operational costs are reduced
by a more effective combination of balancing resources as
well as reduced reserve volumes.

The rest of the paper is organized as follows: In Section
II, the background on the WOC and the linear decision rule-
based reserve allocation is described. Section III presents the
proposed control architecture where a single cell operation and
web of cells concepts are included. In section IV, case studies
are reported. Finally, discussion and conclusions are reported
in Section V.

II. BACKGROUND

As the results present an application of the policy-based
reserve concept [10] to the ELECTRA WoC use cases, we
outline the fundamentals here.

A. Web of Cells Concept: Fully Decentralized and Distributed
Power System Control

The Web of Cells (WoC) concept [8] is a proposal to
reformulate the control architecture of electric power systems
to accommodate the challenges of fully distributed generation,
reduced inertia, storage integration and flexible demand. The
core of WoC is a reformulation of power system real-time
operation into a decentralized control scheme in terms of semi-
autonomous cells. Cells, as non-overlapping topological sub-
sets of a power system, are associated with a scale-independent
operational responsibility to contribute to system operation and
stability. This horizontal and decentralized scheme increases
the robustness with respect to communication and ensures a
’fallback’ operating state in case of significant disruptions.
The operating state, including power exchanges and reserve
parameters, then, can be continuously optimized by distributed
coordination across cells. In contrast with present vertical
operating concepts, here operating responsibility is fully del-
egated to a cell, while in contrast with microgrids, the WoC
concept assumes a base case of interconnected operation.

The control concept is defined in terms of four active power
control functions and two voltage control functions [9]: a
cascaded reactive control from fast inertia response, over fre-
quency containment to balance restoration, eliminates system
and cell imbalances, which is then adjusted coordination with
neighbouring cells via balance steering. The goal of balance
restoration control is to restore control cell balance and by
doing so restoring inter-cell power flows to secure values. The
aim of balance steering control is to minimise the need for
balancing reserves.

The WoC control architecture can be formulated in terms
of four control topology levels (CTLs): device level - CTL 0,
flexibility unit level (aggregate device flexibility) - CTL1, cell
level - CTL2, and WoC level - CTL3. For the subject of this
work we focus on CTL1 to CTL3: the objective of balance
restoration is defined at CTL2, utilizing resources from CTL1;
whereas coordination with neighbouring cells in balance steer-
ing corresponds to CTL3 operations utilizing CTL2 entities

and possibly CTL1 resources. To address elements at a specific
control topology level we define the following notation:

• A flexible unit i corresponds to CTL1 and is an element
of the set of all units i ∈ Ω in the power system;

• A cell α is composed of a set of units i ∈ φα ⊆ Ω; Note
that cells do not share units: φα1∩φα2 = ∅ for α1 6= α2,
and each unit belongs to a cell

⋃
α∈Θ φα = Ω;

• The cell is an element α ∈ Θ in the set of all cells.
• A cell α can be part of a set of cells α ∈ Φp ⊆ Θ

A further refinement of these sets is provided in Section III-B.
As operational context, the WoC concept assumes pre-

defined operating points for power and thus a market based
operating schedule (with e.g. 15min time resolution), for all
units and estimated exchanges of tie-line power flows. The
control architecture accommodates deviations formulated with
respect to such a schedule, respecting operating constraints
utilizing allocated reserves.

B. Robust Reserve Allocation with Linear Decision Rules

The power system model and the affine control policies are
briefly introduced here, based on the work in [10], more details
for the cell operations will be introduced in Section III-A.

1) Node model: The power system consists of a set of
nodes connected to the power network. Two types of node
models are introduced: inelastic and elastic power injections or
extractions. The inelastic part of a node is modeled as ri+Giδ,
where i identifies each participating unit. ri ∈ RT refers
to the nominal predicted power injection or extraction. The
aggregated random forecast error δ has the form δ ∈ RT , δ =
[δ0, ..., δT−1]′, and Gi represents the unit’s proportional share
of δ.

The elastic power part is modeled as CiXi, where Ci ∈
RT×niT , Xi ∈ RniT is the state variable of unit i, ni is the
state dimension, which can be written as a function of the
input sequence and the current state xi0 ∈ Rni .

Xi = Aix
i
0 +Biui (1)

where u ∈ RT is the control input to the elastic power units
for balancing the system. The internal state xi is governed by
linear time-invariant dynamics modeled by Ai ∈ Rni×ni and
Bi ∈ Rni .

2) network model: In the network model part, a system
balance equality constraint is imposed for the inelastic power
flow and elastic power flows, thermal lines constraints can also
be included.

3) Affine control policies: To formulate the optimal reserve
allocation minimization problem, a quadratic cost function
including the control variable u and state variable x is
used. To make the optimization problem tractable, policies of
affine form are applied which leads to the following equation
ui = ei + Diδ where ei ∈ RT is the nominal schedule for
elastic unit i, and Di ∈ RT×T is the dynamic responding part
to the prediction errors. Di takes the lower-triangular form.



III. LINEAR DECISION RULES FOR ALLOCATING
RESERVES IN A CELL-BASED POWER SYSTEMS

In this section, we firstly introduce the robust optimal
reserve allocation problem with linear decision rules at the
level of a single cell (CTL2). In a second step, we propose
an extension of this application to include multiple cells, thus
defining inter-cell cooperation models (CTL3).

A. Single Cell Operation

A cell imbalance is computed based on the cell boundary
integral (i.e. the sum of tie-line flows), as compared to
scheduled flows and corrected for the cell’s power-frequency
characteristic. The imbalance of a single cell α is the sum of
a forecasted deviation and further real-time fluctuations:

∆α =
∑
i∈φα

(ri +Giδα) = rα + δα ∀α ∈ Θ (2)

Balancing power provided by a cell is based:

uα =
∑
i∈φα

ui =
∑
i

ei +Diδα ∀α ∈ Θ (3)

1) Cell-based reserve allocation model: In this cell-based
power system, four types of units are considered and these
four types of units are represented in four sets φREα , φLα, φGα
and φDERα . In detail,

1) Renewable generation, which brings the uncertainty to
the system. Wind power is modeled as Wi+Giδα, where
Wi denotes the nominal prediction and Giδα represents
wind proportion of the forecast error whose value is to
be discovered in the future.

2) General load, which can be modeled as P loadi + Giδα
the physical meaning of these variables is similar to the
one in the wind generation.

3) Thermal generation that matches the needs of the general
loads as well as responding to the uncertainty introduced
by the wind generation. Thermal generation is modeled
as P gi (δα) ∈ RT .

4) Distributed energy resources with flexibilities like elec-
tric vehicles, batteries etc. These are considered as
energy constrained resources. A distributed energy re-
source is modeled as P deri (δα) ∈ RT .

For a typical reserve allocation problem, the basics are well
explained in [12] such as the system balance constraint, the
thermal generation power constraints etc., thus this will not
further be explained here.

Specifically, regarding unit type 4), it is assumed that an
aggregator a portfolio of flexible energy-constrained resources,
represented here as a single DER unit. As a portfolio, these
energy constrained resources can shift their power over time,
but are constrained by a maximum (and minimum) energy
consumption. Examples of such resources are electric ve-
hicles, batteries, etc. The individual energy constraints of
such a resource are specified by two bounds, Emin and
Emax ∈ RT , expressing the maximum allowed and minimally
required energy consumption of the resource for each timestep
within the applied time horizon T . The aggregator portfolio

(DER unit) is also bounded by power constraints (P deri,min and
P deri,max ∈ RT ) indicating the maximum and minimum power
the portfolio can consume/produce at each instant during time
T : P deri,min ≤ P deri (δα) ≤ P deri,max. The combination of energy
and power constraints are an expression of the flexibility-
boundaries of the unit:

Ei,min ≤ E0 +MP deri (δα)∆t ≤ Ei,max (4)

where M ∈ RT×T with Mi,j = 1 for i ≥ j and Mi,j = 0 for
i < j.

Overall, the reserve-based optimization problem is formu-
lated as follows:

min Eδα
{ ∑
i∈φG

α

(αgiP
g
i (δα)TP gi (δα) +Bgi P

g
i (δα) + ĪCi)+

∑
i∈φDER

α

(αderi P deri (δα)TP deri (δα) +Bderi P deri (δα) + ĪCi)
}

(5)
subject to system constraints, line constraints, and individual

unit’s operational constraints, where ag,deri , Bg,deri , Ci are
stacked vector of quadratic, linear coefficients and constant
part of the generation/DER cost function, Ī is a vector of
all ones. Until this stage, the whole optimization problem
is intractable due to the wide variety of candidate functions
P gi (δα), P deri (δα).

2) Robust allocation with Linear Decision Rules: We re-
strict ourselves to the case where recourse decision variables
P g(δα), P deri (δα) are affine functions of uncertainty δα [13].
This implies the power schedule of thermal generation and
distributed energy resources comply with the following rela-
tionships:

P gi (δα) = egi +Dg
i δα,∀i ∈ φ

G
α. (6)

P deri (δα) = ederi +Dder
i δα,∀i ∈ φDERα . (7)

where the upper diagonal part of matrix D is zero.
In the remainder of this section, we introduce reformulations

of the objective function as an example for applying this affine
functions.

Substituting (6) and (7) into the objective function (5), one
gets

min Eδα
{ ∑
i∈φG

α

(αgi (e
g
i +Dg

i δα)2 +Bgi (egi +Dg
i δα)

+ ĪCi) +
∑
i∈φDER

α

(αderi (ederi +Dder
i δα)2

+Bderi (ederi +Dder
i δα) + ĪCi)

} (8)

With E[δα] = 0 and the known E[δαδ
′
α], the objective

function (8) can be written as



min
∑
i∈φG

α

(
αgi

(
egTi egi + 〈DgT

i Dg
i E[δαδ

′
α]〉
)

+Bgi e
g
i+

ĪCi
)

+
∑
i∈φDER

α

(
αderi

(
ederTi ederi +

〈DderT
i Dder

i E[δαδ
′
α]〉
)

+Bderi ederi + ĪCi
) (9)

For other equality and inequality constraints reformulation,
the approach is similar to [13] and thus the detailed formula-
tion is not presented here.

B. Co-operation of Multiple Cells

Whereas power system operation today assumes automatic
support for low-voltage subsystems to be provided from higher
voltage levels, the WoC, in a first step, removes this assump-
tion and replaces it with a new strong responsibility for cells:
to maintain balance with respect to exchange schedules and
other operational constraints. However, as discussed above,
this WoC framework may also be employed to define cooper-
ation strategies across cells (i.e. at CTL3). Together separation
of concerns enables overall more secure operation and a
modularized approach to handle the increased number decision
variables. In this section we will demonstrate how cooperation
amongst cells by (mutual) assistance with imbalances can
be defined, and explore a few simple cooperation strategies.
We define the cooperation in two steps: first a cooperation
topology is formulated, and second, the cooperation strategy
on this topology is defined.

1) Coordination topology: For cell operators, a cooperative
behaviour is likely, as operators share goals and are non-
competing. In balancing control, cooperation corresponds to
active power being transferred from one cell to one or several
others to reduce other’s or a shared imbalance. A coordination
topology in a Web-of-Cells can then be thought of as uni-
directional (directed graph) or as non-directional (undirected
graph). The general (directional) case is formalized via adja-
cency sets as follows:
• for each cell α the set Nα ⊆ Θ refers to the cells

supported by it, i.e. by responding in some way to the
imbalances of a cell β ∈ Nα.

• further, each cell α there is a set Mα ⊆ Θ of cells it is
supported by.

Obvious special cases are:
Case 1: No cooperation between cells: ‖Mα‖ = ‖Nα‖ = 1

for all α ∈ Θ, with {α} = Mα and {α} = Nα. This case
corresponds to a replication of [previous section] in all cells.
It is the ’fully decentralized’ solution. While computationally
feasible, this case is suboptimal, considering the potential for
imbalance netting and resource optimization across cells.

Case 2: Full cooperation between all cells:Mα =Mβ = Θ
and thus Nα = Nβ = Θ for all α, β ∈ Θ. This case may be
an extreme case if the set of cells is large, and may thus not
be tractable as a single optimization problem.

In between these extreme cases there is a range of possible
directional or non-directional cooperation topologies. Such
cooperation would, as one criterion, be related to the electrical
topology of the power system - but also other criteria should
be considered, such as e.g. complementarity of balancing
resources or (anti-)correlation of respective imbalance signals.

In the following we shall focus on one non-directional
cooperation topology referred to as pool of cells: A cell α
can be part of a pool of cooperating cells α ∈ Φp ⊆ Θ;
this term implies a mutual support role such that a mix
of both special cases above applies for all cells in Φp:
Mα = Mβ = Φp, Nα = Nβ = Φp for all α, β ∈ Φp,
and thus ‖Mα‖ = ‖Nα‖ = ‖Φp‖.

In other words, within a pool of cells the participating cells
pool both imbalances and balancing resources together.

Another situation with high practical relevance is the case
in which the asymmetric pooling is likely: e.g. for densely
populated (urban) distribution grids, it is unlikely that the
generation and balancing resources are sufficient to help out
another cell, whereas, propagating todays operating principles,
it will likely require external balancing resources. Such a case
corresponds to a pool of cells helping a single cell:Mα = Φp,
and the cell only helping itself ‖Nα‖ = 1 with {α} = Nα.
Such cases can also be formulated as a cascade with several
pools, or in the sense of a single ’higher-level’ cell helping
several ’appended’ cells: : Nα = Φp, and the cell’s own
imbalance not being a concern ‖Mα‖ = 0.

2) Coordination Strategy: With a given cooperation topol-
ogy, we can introduce the coordination strategy, which defines
how the cooperation is realized. Two kinds of coordination
strategies are considered in this study: a) imbalance-pooling
cooperation, in which the cells of a pool Φp form a joint
imbalance signal (δp =

∑
α∈Φp

δα) that is balanced jointly
by also poolung the balancing resources (cf. Scenario 2
of Section IV. A); b) balancing support, in which support
is provided asymmetrically (corresponding to the last case
discussed above); this case is studied in Scenario 3 of Section
IV.A.

IV. CASE STUDIES

In this section, we firstly present the case study for a three-
cell system, investigating different coordination strategies.
Then, the single cell case study is presented where two types
of units are used to balance out the cell imbalance, and features
of energy constrained resources are described.

A. Multiple (2-3) cells with grid constraints and energy con-
strained units

Fig. 1 shows an illustrating example of a three cells system,
in which the three cells are connected by two tie-lines. Three
scenarios in terms of coordination strategies are envisioned in
this case study: 1) a fully decentralized solution where each
cell has individual imbalance signals and has enough resources
to address the imbalances within the cell; 2) cell 1 and cell 2
have a joint imbalance signal and thus the imbalance will be
addressed by the joint resources of cell 1 and cell 2, cell 0 has



Fig. 1: An illustrating example of three cells system

Fig. 2: An illustrating example of three cells system

its imbalance signal and its own balancing resources; 3) this
scenario is a variant of scenario 1 but in this scenario cell 1
balancing resources can be used to address the imbalances in
both cell 1 and cell 2.

To find a reasonable imbalance signal for the system, the
historical data of 15-mins based Belgian system imbalance
(available on the website of the Belgian TSO Elia [14]) is
scaled down and used for this study. The half year time-
series imbalance signals are divided into three segments. When
adapting the signals to the three cells, the scaling down factor
is increased by a product of 2 when it comes to cell 0, cell 2,
and cell 1. Afterwards, the mean of the scaled value in each
segment is used as the nominal predictions for three cells,
which is shown in the Fig. 2. The prediction error for each
cell was defined as the deduction of the scaled value and the
mean, which is also shown in the Fig. 2. Note that for scenario
2, the imbalance signals of cell 1 and cell 2 are combined into
one imbalance signal.

The prediction error covariance of the three cells is cal-
culated and an operation period of three hours is selected in
the study. In term of the coefficients of the cost functions for
the balancing resources within each cell (note an aggregated
balancing resource/battery is assumed for each cell in this
three-scenario comparison study), the quadratic and linear
coefficients of the resource for cell 1, cell 2 and cell 0 are
(0.1, 0.1), (1, 3), (0.1, 5), respectively. Here, we envision that
cell 1 will have balancing resources consisting of electric
vehicles, batteries, heat pumps etc. Cell 2 balancing resources
could come from industrial demand response and a dedicated
battery, and the resources of cell 0 mainly are conventional
thermal generations. By having the power constraints of the
balancing resources and the compact set of the prediction
error constraints, the balancing cost for the three scenarios are
calculated as 120.67 for scenario 1, 22.29 for scenario 2, and
-297.08 for scenario 3. These results indicate that scenario
2 and 3 show a clear advantage over scenario 1 in term of
having a lower cost because of the joint imbalance signals
as well as the cooperation strategy. Scenario 3 is interesting
because of the negative value of the cost. This is because when
addressing the imbalances in cell 1 and cell 2, especially in
cell 1, the optimization tries to charge battery of cell 1 a lot
and meanwhile discharge the battery of cell 0 significantly
with the purpose of reducing the balancing cost, considering
the huge cost difference between cell 1 and cell 0. Note that
energy constraints, tie-line flow and other practical constraints
are not considered here, this may change the value of the
reserve cost but the reasoning remains.

B. Single Cell with Energy Constraint units

In this single cell operation, two types of units/batteries
at control topology level 1 (CTL1) are included for demon-
strating the LDR policy as well as the features of the energy
constrained resources. These two types of units are unit 1, and
unit 2 which is energy constrained. It is assumed that reserve
cost of unit 2 is cheaper than unit 1. The quadratic and linear
coefficients for two units are (0.3, 0.5), (0.1, 0.5).

The brighter yellow diagonal of lower part of Fig. 3
indicates that unit 1 contribute more than unit 2 to the cell
imbalances, even though the cost of unit 1 is expensive. This
is because, as illustrated in Fig. 4, the energy capacity of unit
2 has been nearly reached at the end of the planned horizon.
In the figure, blue coarse curve means the minimum energy
capacity of unit 2, red coarse curve is the maximum energy
capacity of unit 2, red thin curve is the response curve to the
worst positive imbalance signal while the green curve denotes
the response to the worst negative imbalance signal. The black
curves are realizations of 10 typical three hours (15 mins-
based) curves randomly chosen from the half year used in
generating the covariances. The energy dynamics of two units
show the robustness of the approach.

V. CONCLUSION

We presented an application of a recent method for calcula-
tion of robust policy based reserves to the ELECTRA Web-of-



Fig. 3: Reactions of unit 1 to the imbalance signals.

Fig. 4: Energy and power curves of two units.

Cells control architecture and explored basic schemes of inter-
cell coordination. By exemplary comparison of the basic de-
centralized scheme with two alternative inter-cell coordination
schemes the potential resource savings of cooperation have
been revealed. Further, it has been demonstrated that control
policies based on Linear Decision Rules are well suited for
integration of energy-constrained DER in reactive balancing
control, and the robust allocation method is applicable to
realistic imbalance signals. Future work should develop addi-
tional inter-cell coordination schemes and explore the potential
multi-level aggregation of control resources in a policy-based
control framework. In addition, when adapting the method
into real cases, the cost function that represents the balancing
service provision should also be investigated.
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