66,960 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Price-Based Optimal Resource Allocation in Multi-Hop Wireless Networks

    Get PDF
    Recent advances in wireless communications and digital electronics have enabled rapid development of a variety of wireless network technologies. The undeniable popularity of wireless network is due to its ubiquity and convenience, which is appreciated by the users. In this dissertation, we study the problem of resource allocation in multihop wireless networks (so called ad hoc networks). A wireless ad hoc network consists of a collection of wireless nodes without a fixed infrastructure. Two wireless nodes communicate with each other directly, if they are within the transmission range of each other. Otherwise, the communication is achieved through the relays of intermediate nodes. Compared with traditional wireline networks, the unique characteristics of wireless networks pose fundamental challenges to the design of effective resource allocation algorithms that are optimal with respect to resource utilization and fair across different network flows. Particularly, the following issues of wireless networks need fresh treatment: (1) Interference of wireless communication. Flows not only contend at the same node (contention in the time domain), but also compete for shared channel if they are within the interference ranges of each other (contention in the spatial domain). (2) Multiple resource usage. Sending data from one wireless node to another needs to consume multiple resources, most notably wireless bandwidth and battery energy. (3) Autonomous communication entities. The wireless nodes usually belong to different autonomous entities. They may lack the incentive to contribute to the network functionality in a cooperative way. (4) Rate diversity. Wireless nodes can adaptively change the transmission bit rate based on perceived channel conditions. This leads to a wireless network with rate diversity, where competing flows within the interference range transmit at different rates. None of the existing resource allocation algorithms in wireless ad hoc networks have realistically considered end-to-end flows spanning multiple hops. Moreover, strategies proposed for wireline networks are not applicable in the context of wireless ad hoc network, due to its unique characteristics. In this dissertation, we propose a new price-based resource allocation framework in wireless ad hoc networks to achieve optimal resource utilization and fairness among competing end-to-end flows. We build our pricing framework on the notion of maximal cliques in wireless ad hoc networks, as compared to individual links in traditional wide-area wireline networks. Based on such a price-based theoretical framework, we present a two-tier iterative algorithm. Distributed across wireless nodes, the algorithm converges to a global network optimum with respect to resource allocations. Further, we present a price pair mechanism to coordinate multiple resource allocations, and to provide incentives simultaneously such that cooperation is promoted and the desired global optimal network operating point is reached by convergence with a fully decentralized self-optimizing algorithm. Such desired network-wide global optimum is characterized with the concept of Nash bargaining solution, which not only provides the Pareto optimal point for the network, but is also consistent with the fairness axioms of game theory. Finally, we present a channel aware price generation scheme to decompose the bit rate adjustment and the flow rate allocation. The allocation result achieves channel time fairness where user fairness and channel utilization is balanced. The major achievements of this dissertation are outlined as follows. It models a system-wide optimal operation point of a wireless network, and outlines the solution space of resource allocation in a multihop wireless network; It presents a price-based distributed resource allocation algorithm to achieve this global optimal point; It presents a low overhead implementation of the price-based resource allocation algorithm; It presents an incentive mechanism that enables the resource allocation algorithm when users are selfish

    DESIGN OF EFFICIENT IN-NETWORK DATA PROCESSING AND DISSEMINATION FOR VANETS

    Get PDF
    By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment

    Coordination of Mobile Mules via Facility Location Strategies

    Full text link
    In this paper, we study the problem of wireless sensor network (WSN) maintenance using mobile entities called mules. The mules are deployed in the area of the WSN in such a way that would minimize the time it takes them to reach a failed sensor and fix it. The mules must constantly optimize their collective deployment to account for occupied mules. The objective is to define the optimal deployment and task allocation strategy for the mules, so that the sensors' downtime and the mules' traveling distance are minimized. Our solutions are inspired by research in the field of computational geometry and the design of our algorithms is based on state of the art approximation algorithms for the classical problem of facility location. Our empirical results demonstrate how cooperation enhances the team's performance, and indicate that a combination of k-Median based deployment with closest-available task allocation provides the best results in terms of minimizing the sensors' downtime but is inefficient in terms of the mules' travel distance. A k-Centroid based deployment produces good results in both criteria.Comment: 12 pages, 6 figures, conferenc

    On the Experimental Evaluation of Vehicular Networks: Issues, Requirements and Methodology Applied to a Real Use Case

    Get PDF
    One of the most challenging fields in vehicular communications has been the experimental assessment of protocols and novel technologies. Researchers usually tend to simulate vehicular scenarios and/or partially validate new contributions in the area by using constrained testbeds and carrying out minor tests. In this line, the present work reviews the issues that pioneers in the area of vehicular communications and, in general, in telematics, have to deal with if they want to perform a good evaluation campaign by real testing. The key needs for a good experimental evaluation is the use of proper software tools for gathering testing data, post-processing and generating relevant figures of merit and, finally, properly showing the most important results. For this reason, a key contribution of this paper is the presentation of an evaluation environment called AnaVANET, which covers the previous needs. By using this tool and presenting a reference case of study, a generic testing methodology is described and applied. This way, the usage of the IPv6 protocol over a vehicle-to-vehicle routing protocol, and supporting IETF-based network mobility, is tested at the same time the main features of the AnaVANET system are presented. This work contributes in laying the foundations for a proper experimental evaluation of vehicular networks and will be useful for many researchers in the area.Comment: in EAI Endorsed Transactions on Industrial Networks and Intelligent Systems, 201

    Intrusion Detection in Mobile Ad Hoc Networks Using Classification Algorithms

    Full text link
    In this paper we present the design and evaluation of intrusion detection models for MANETs using supervised classification algorithms. Specifically, we evaluate the performance of the MultiLayer Perceptron (MLP), the Linear classifier, the Gaussian Mixture Model (GMM), the Naive Bayes classifier and the Support Vector Machine (SVM). The performance of the classification algorithms is evaluated under different traffic conditions and mobility patterns for the Black Hole, Forging, Packet Dropping, and Flooding attacks. The results indicate that Support Vector Machines exhibit high accuracy for almost all simulated attacks and that Packet Dropping is the hardest attack to detect.Comment: 12 pages, 7 figures, presented at MedHocNet 200
    • …
    corecore