2,312 research outputs found

    Local Government Policy and Planning for Unmanned Aerial Systems

    Get PDF
    This research identifies key state and local government stakeholders in California for drone policy creation and implementation, and describes their perceptions and understanding of drone policy. The investigation assessed stakeholders’ positions, interests, and influence on issues, with the goal of providing potential policy input to achieve successful drone integration in urban environments and within the national airspace of the United States. The research examined regulatory priorities through the use of a two-tiered Stakeholder Analysis Process. The first tier consisted of a detailed survey sent out to over 450 local agencies and jurisdictions in California. The second tier consisted of an in-person focus group to discuss survey results as well as to gain deeper insights into local policymakers’ current concerns. Results from the two tiers of analysis, as well as recommendations, are provided here

    A 79.7g Manipulator Prototype for E-Flap Robot: A Plucking-Leaf Application

    Get PDF
    The manipulation capabilities of flapping-wing flying robots (FWFRs) is a problem barely studied. This is a direct consequence of the load-carrying capacity limitation of the flapping-wing robots. Ornithopters will improve the existent multirotor unmanned aerial vehicles (UAVs) since they could perform longer missions and offer a safe interaction in proximity to humans. This technology also opens the possibility to perch in some trees and perform tasks such as obtaining samples from nature, enabling biologists to collect samples in remote places, or assisting people in rescue missions by carrying medicines or first-aid kits. This paper presents a very lightweight manipulator (79.7g) prototype to be mounted on an ornithopter. The distribution of the mass on the flapping-wing robot is sensitive and an extra lumped mass far from the center-of-mass (CoM) of the robot deteriorates the flight stability. A configuration was proposed to avoid changing the CoM. Flight experiments show that adding the arm to the robot only moved the CoM 6mm and the performance of the flight with the manipulator has been satisfactory. Plucking leaf is chosen as an application to the designed system and several experimental tests confirmed successful sampling of leaves by the prototype

    Collaborative Unmanned Vehicles for Inspection, Maintenance, and Repairs of Offshore Wind Turbines

    Get PDF
    Operations and maintenance of Offshore Wind Turbines (OWTs) are challenging, with manual operators constantly exposed to hazardous environments. Due to the high task complexity associated with the OWT, the transition to unmanned solutions remains stagnant. Efforts toward unmanned operations have been observed using Unmanned Aerial Vehicles (UAVs) and Unmanned Underwater Vehicles (UUVs) but are limited mostly to visual inspections only. Collaboration strategies between unmanned vehicles have introduced several opportunities that would enable unmanned operations for the OWT maintenance and repair activities. There have been many papers and reviews on collaborative UVs. However, most of the past papers reviewed collaborative UVs for surveillance purposes, search and rescue missions, and agricultural activities. This review aims to present the current capabilities of Unmanned Vehicles (UVs) used in OWT for Inspection, Maintenance, and Repair (IMR) operations. Strategies to implement collaborative UVs for complex tasks and their associated challenges are discussed together with the strategies to solve localization and navigation issues, prolong operation time, and establish effective communication within the OWT IMR operations. This paper also briefly discusses the potential failure modes for collaborative approaches and possible redundancy strategies to manage them. The collaborative strategies discussed herein will be of use to researchers and technology providers in identifying significant gaps that have hindered the implementation of full unmanned systems which have significant impacts towards the net zero strategy.</jats:p

    Modeling and control of an overactuated aerial vehicle with four tiltable quadrotors attached by means of passive universal joints

    Get PDF
    We present a novel overactuated aerial vehicle based on four quadrotors connected to an airframe by means of passive universal joints. The proposed architecture allows to independently control the six degrees of freedom of the airframe without having fixed propellers at inefficient configurations or making use of dedicated rotor tilting actuators. After deriving the dynamic equations that describe its motion, we propose a linear control strategy that is able to successfully decouple rotation and translation, relying exclusively on on-board sensors. A prototype is built and preliminary experimental results demonstrate that the concept is feasible.Video: https://youtu.be/9ASP3FyhCJw.This research was supported by the ELKARTEK 2018 program of the Basque Government, grant agreement No. KK-2018/00082

    Adaptive fault-tolerant control of uncertain nonlinear systems under Actuator failure of unmanned aerial vehicles

    Get PDF
    With the increasingly extensive application of UAV technology, UAV accidents are increasing, and the safety problem is becoming more and more serious. Therefore, it is urgent to ensure the safety and reliability of UAV. This paper fi rstly introduces the application requirements and research signifi cance of the fault-tolerant control system of UAV; Secondly, the classifi cation of fault-tolerant control system of UAV is introduced. Finally, taking the nonlinear system of UAV as an example, the controller and its parameters are derived, and Simulink simulation model is established with MATLAB software to verify that the designed adaptive fault-tolerant controller can eff ectively maintain the stability and reliability of the system

    Autonomisen multikopteriparven hallinta etsintä- ja pelastustehtävissä

    Get PDF
    This thesis presents the requirements and implementation of a Ground Control Station (GCS) application for controlling a fleet of multicopters to perform a Search And Rescue (SAR) mission. The requirements are put together by analysing existing drone types, SAR practices, and available GCS applications. Multicopters are found to be the most feasible drone to use for the SAR use case because of their maneuverability, despite not having the best endurance. Several existing area coverage methods are presented and their usefulness is analyzed for SAR scenarios where different amounts of prior knowledge is available. It is stated that most search patterns can be used with a fleet of drones, by creating drone formations and by dividing the target area into sub-areas. It is noted that most currently available GCS applications are focused on controlling a single drone for either industrial or hobby use. A proof of concept prototype is developed on top of an open source GCS and tested in field tests. Based on all the previous learnings from the protype and research, a new GCS is designed and developed. The development on optimizing communications between the GCS and the autopilot leads to a filed patent application. The new software is tested with three multicopters in a water rescue scenario and several user interface improvements are made as a result of the learnings. The development of a GCS for controlling a drone fleet for search and rescue is proven feasible.Työssä esitetään multikopteriparven hallintaan käytettävän Ground Control Station (GCS) ohjelmiston vaatimukset ja toteutus Search And Rescue (SAR) etsintä- ja pelastustehtävien suorittamiseksi. Vaatimukset kootaan yhteen analysoimalla saatavilla olevia droonityyppejä, SAR pelastuskäytäntöjä, sekä GCS ohjelmistoja. Multikopterit osoittautuvat liikkuvuutensa ansiosta pelastustehtäviin sopivimmaksi vaihtoehdoksi, vaikka niiden saavutettavissa oleva lentoaika ei ole parhaimmasta päästä. Erilaisia etsintämetodeja esitetään alueiden kattamiseksi ja niiden hyödyllisyyttä analysoidaan SAR tilanteissa, joissa ennakkotietoa on saatavilla vaihtelevasti. Osoitetaan, että useimpia etsintäalgoritmeja voidaan hyödyntää drooniparvella, muodostamalla lentomuodostelmia, sekä jakamalla kohdealue pienempiin osa-alueisiin. Huomataan, että suurin osa tällä hetkellä saatavilla olevista GCS ohjelmistoista on suunnattu teollisuuden tai harrastelijoiden käyttöön, pääasiassa yksittäisen droonin hallintaan. Prototyyppi kehitetään avoimen lähdekoodin GCS ohjelmiston pohjalta ja testataan kenttätesteissä. Tästä saadun tiedon avulla suunnitellaan ja kehitetään uusi GCS ohjelmisto. Kehitystyö viestinnän optimoinniksi autopilotin ja GCS ohjelmiston välillä johtaa patenttihakemukseen. Uusi ohjelmisto testataan kolmella multikopterilla vesipelastustilanteessa ja sen seurauksena käyttöliittymään tehdään useita parannuksia. GCS ohjelmiston luominen drooniparven hallintaan etsintä- ja pelastustehtävissä todetaan mahdolliseksi
    corecore