2 research outputs found

    Reinforcement Learning, Intelligent Control and their Applications in Connected and Autonomous Vehicles

    Get PDF
    Reinforcement learning (RL) has attracted large attention over the past few years. Recently, we developed a data-driven algorithm to solve predictive cruise control (PCC) and games output regulation problems. This work integrates our recent contributions to the application of RL in game theory, output regulation problems, robust control, small-gain theory and PCC. The algorithm was developed for H∞H_\infty adaptive optimal output regulation of uncertain linear systems, and uncertain partially linear systems to reject disturbance and also force the output of the systems to asymptotically track a reference. In the PCC problem, we determined the reference velocity for each autonomous vehicle in the platoon using the traffic information broadcasted from the lights to reduce the vehicles\u27 trip time. Then we employed the algorithm to design an approximate optimal controller for the vehicles. This controller is able to regulate the headway, velocity and acceleration of each vehicle to the desired values. Simulation results validate the effectiveness of the algorithms

    Cooperative Adaptive Cruise Control of Connected and Autonomous Vehicles Subject to Input Saturation

    No full text
    This paper proposes a novel solution to the cooperative adaptive cruise control problem of a platoon of connected and autonomous vehicles. A low-gain control algorithm is designed to accommodate the requirement of the input saturation. The stability of the closed-loop system is rigorously analyzed. The effectiveness of the proposed computational control algorithm is demonstrated via numerical simulations
    corecore