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REINFORCEMENT LEARNING, INTELLIGENT CONTROL AND THEIR

APPLICATIONS IN CONNECTED AND AUTONOMOUS VEHICLES

by

ADEDAPO ODEKUNLE

(Under the Direction of Weinan Gao)

ABSTRACT

Reinforcement learning (RL) has attracted large attention over the past few years. Recently,

we developed a data-driven algorithm to solve predictive cruise control (PCC) and games

output regulation problems. This work integrates our recent contributions to the application

of RL in game theory, output regulation problems, robust control, small-gain theory and

PCC. The algorithm was developed for H∞ adaptive optimal output regulation of uncertain

linear systems, and uncertain partially linear systems to reject disturbance and also force

the output of the systems to asymptotically track a reference. In the PCC problem, we

determined the reference velocity for each autonomous vehicle in the platoon using the

traffic information broadcasted from the lights to reduce the vehicles’ trip time. Then we

employed the algorithm to design an approximate optimal controller for the vehicles. This

controller is able to regulate the headway, velocity and acceleration of each vehicle to the

desired values. Simulation results validate the effectiveness of the algorithms.

INDEX WORDS: Reinforcement learning, Adaptive control, Game theory, Small-gain

theory, Robust control, Predictive cruise control
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CHAPTER 1

INTRODUCTION

1.1 REINFORCEMENT LEARNING

Reinforcement learning (RL) was first attributed to the learning behavior of human

beings and other higher animals (Sutton & Barto, 1998). Looking at the nature of learn-

ing; we learn by interacting with our environment with no explicit teacher. However, there

is a direct connection with the learning environment which produces a plethora of infor-

mation about cause and effect, consequences of actions, and what to do to achieve some

set goals. RL involves how intelligent agents modify their action for a better interaction

with an uncertain environment to minimize some cost functional or maximize some accu-

mulated reward. RL differs from supervised learning in a way that it uses trial and error

method for its modification unlike supervised learning where training data are used. Trial

and error search and delayed reward are two important features of RL (Sutton & Barto,

1998; Watkins, 1989). RL is defined as learning what to do and how to map situations

to actions so as to maximize a numerical reward signal or minimize cost functional. RL

refers to an actor or an agent that interacts with its environment and modifies its actions,

or control policies based on stimuli received in response to its actions hence, it is an ac-

tion based learning (Lewis & Vrabie, 2009). This implies a cause and effect relationship

between actions and reward or cost. The actor will be able to differentiate rewards and

lack of reward or cost during the learning process. The RL algorithms are designed based

on the idea that successful control decisions are remembered by a reinforcement signal

to increase the chances of their re-usability. RL is connected from a theoretical point of

view with direct and indirect adaptive optimal control methods. A simple class of rein-

forcement learning methods is modeled using the Actor-Critic structure (Barto, Sutton, &

Anderson, 1983) as depicted in Fig. 1.1. The actor component applies the control policy
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Figure 1.1: Simple Illustration of the RL

(action) to the environment, while the critic assesses the value of the control policy applied

to the environment. An improvement on the previous value is sought to obtain a new pol-

icy by modifying or improving the action based on the assessment of the previous value.

RL formed an important branch of machine learning theory and has been integrated into

computational intelligence, computer science and control systems engineering literature as

an effective way to study artificial intelligence (Mendel & McLaren, 1970; Minsky, 1961;

Waltz & Fu, 1965; Sutton & Barto, 1998). This has brought about a lot of contributions to

control engineering (Gao, Liu, Odekunle, Yu, & Lu, 2018; Gao, Odekunle, Chen, & Jiang,

2018; Gao, Liu, Odekunle, Jiang, et al., 2018; Odekunle, Gao, Anayor, Wang, & Chen,

2018; Gao & Jiang, 2016a; Vamvoudakis, 2014; Fan & Yang, 2016; Wang, Liu, Li, Luo, &

Ma, 2016; Y. Jiang, Fan, Chai, Li, & Lewis, 2017).

1.1.1 THE DEVELOPMENT OF REINFORCEMENT LEARNING

The development of RL has two major phases. Firstly, RL was studied in computer

science and operation research. In these fields, they employed both the policy iteration and

value iteration (Sutton, 1990). Temporal difference methods were also integrated into RL

. The well-known Q-learning method proposed by Watkins was also studied as a tool in
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RL (Watkins, 1989). This Q-learning has a lot of similarities with the action-dependent

Heuristic Dynamic Programming scheme proposed by Werbos (Werbos, 1989). Similar re-

search work involving the framework of Markov decision processes are generally discrete

in time and state-space (Sutton & Barto, 1998; Sutton, 1990; Barto et al., 1983; Waltz &

Fu, 1965; Minsky, 1961). The second phase involves the design of real-time controllers,

analysis techniques that yield guaranteed provable performance, stability and safety mar-

gins for dynamic systems (linear and nonlinear). The integration of stability theory and

RL was introduced by Lewis (Lewis & Vrabie, 2009). This has a great advantage in ob-

taining an optimal control strategy iteratively by using online information without the need

to solve algebraic Riccati equation (ARE) or the Hamilton-Jacobi-Bellman (HJB) equation

for the linear and nonlinear systems respectively. This approach does not require having

a full or partial knowledge of what the system dynamics are (Gao, Liu, Odekunle, Yu, &

Lu, 2018; Gao, Odekunle, et al., 2018; Gao, Liu, Odekunle, Jiang, et al., 2018; Odekunle

et al., 2018; Gao & Jiang, 2016a; Vamvoudakis, 2014; Fan & Yang, 2016; Wang et al.,

2016). This data-driven approach is applicable to both the discrete time (DT) (Gao, Liu,

Odekunle, Yu, & Lu, 2018; Gao, Liu, Odekunle, Jiang, et al., 2018; Lewis & Vrabie, 2009)

and the continuous time (CT) systems (Gao, Odekunle, et al., 2018; Gao & Jiang, 2016a;

Vamvoudakis, 2014; Fan & Yang, 2016; Wang et al., 2016).

The higher animals’ intelligence is a very peculiar motivation to develop self-adaptive

systems with a high level of intelligence. With the research trend in the modeling of human

brain and neural system for complex engineering systems, there has been good success

recorded (Y. Jiang et al., 2017; Mu, Ni, Sun, & He, 2017; Wang et al., 2016; H. Zhang,

Cui, Zhang, & Luo, 2011; Vamvoudakis & Lewis, 2012; Al-Tamimi, Lewis, & Abu-Khalaf,

2007; Lewis & Vrabie, 2009), but still there are a lot of open issues in developing a perfect

human intelligence-like systems. In other words, a clear understanding of the human intel-

ligence and its extension to self-adaptive systems to perfectly mimic a level of intelligence
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is still a great challenge to the academia. The major challenge is in designing intelligent

systems with the capacity of “learning optimization” and “learning prediction” over time.

In this work, data-driven algorithms via reinforcement learning is developed for the predic-

tive cruise control of connected and autonomous vehicles, adaptive optimal control for the

output regulation of uncertain linear systems and a robust adaptive optimal control for the

output regulation of uncertain partially linear systems.

Generally, developing a control strategy for continuous time (CT) linear systems is

difficult because of the need to solve the algebraic Riccati equation (ARE). Fortunately,

RL approach gives us an opportunity to obtain the approximate solutions to the ARE with-

out a priori knowledge of the system dynamics while the system stability is maintained

(Werbos, 2009; Gao, Liu, Odekunle, Yu, & Lu, 2018; Gao, Odekunle, et al., 2018; Gao,

Liu, Odekunle, Jiang, et al., 2018; Odekunle et al., 2018; Gao & Jiang, 2016a). Recently,

the RL approach in obtaining an optimal controller for intelligent systems has been gaining

attention in the control engineering research circle and real-world applications (Gao, Liu,

Odekunle, Yu, & Lu, 2018; Gao, Odekunle, et al., 2018; Gao, Liu, Odekunle, Jiang, et al.,

2018; Odekunle et al., 2018; Gao & Jiang, 2016a). The application of RL for the predictive

cruise control of connected and autonomous vehicles is still an open issue to the best of our

knowledge. Also, much work has been done in its application in output regulation prob-

lems (Gao, Liu, Odekunle, Yu, & Lu, 2018; Gao, Liu, Odekunle, Jiang, et al., 2018; Gao

& Jiang, 2016a), but none has extended to the zero-sum two game players. In this thesis,

the detail solutions to this aforementioned problems is provided.

1.2 THESIS ORGANIZATION

The rest of this thesis includes two parts: Algorithms development and applications.

We focus on output regulation problems and the application of RL in intelligent transporta-

tion systems.
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Chapter 2 provides an RL based algorithms for solving the game output regulation

problems and also analysis of its convergence and tracking ability are given. Simulation

results are provided for methodology validation.

Chapter 3 gives a more general result for the application of RL in game output regula-

tion problems by extending it to uncertain partially linear systems. A global robust optimal

controller was designed. Also, nonlinear small-gain theory was applied to show the input-

to-output stability for the closed-loop system. Simulation results were provided to validate

the efficiency of the proposed methodology.

Chapter 4 studies the application of RL in the predictive cruise control of connected

and autonomous vehicles. First, reference velocity is determined for each vehicle in the

platoon. Second, the data-driven algorithm was developed to approximate the optimal

control gains of a desired distributed controller. The obtained controller is able to regulate

the headway, velocity and acceleration of each vehicle in an optimal sense.

Chapter 5 concludes the thesis.

1.3 PUBLICATIONS

The following papers have been published submitted during the course of my research work

under Dr. Weinan Gao:

1. W, Gao.; Y, Liu.; A, Odekunle.; Y, Yu.; and P, Lu.; Adaptive Dynamic Programming

and Cooperative Output Regulation of Discrete-time Multi-Agent systems, Interna-

tional Journal of Control, Automation and Systems, 2018 16(5), 2273-2281.

2. W, Gao.; Y, Liu.; A, Odekunle.; Y, Yu.; Z.P, Jiang.; Y, Yu.; and P, Lu.; Cooper-

ative and Adaptive Optimal Output Regulation of Discrete-time Multi-Agent Sys-

tems Using Reinforcement Learning, IEEE Conference on Real-time Computing and

Robotics, 2018 348-353.
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3. W, Gao.; A, Odekunle.; Y, Chen.; and Z.P, Jiang.; Predictive Cruise Control of Con-

nected and Autonomous Vehicles via Reinforcement Learning, IET Control Theory

and Applications, 2018 8pp.

4. A, Odekunle.; W, Gao.; C, Anayor.; X, Wang.; and Y, Chen.; Predictive Cruise Con-

trol of Connected and Autonomous Vehicles, IEEE Southeast Conference, 2018 1-3.

5. C, Anayor.; W, Gao.; and A, Odekunle.; Cooperative Adaptive Cruise Control of a

Mixture of Human-driven and Autonomous Vehicles, IEEE Southeast Conference,

2018 1-6.

6. A, Odekunle.; W, Gao.; M, Davari.; Z.P, Jiang; Adaptive Optimal Output Regulation

of Uncertain Linear Systems with Differential Games, Automatica (under revision).

7. A, Odekunle.; W, Gao; Data-Driven Global Robust Optimal Output Regulation of

Uncertain Partially Linear Systems, IEEE/CAA Journal of Automatic Sinica (under

review)
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CHAPTER 2

DATA-DRIVEN H∞ ADAPTIVE OPTIMAL OUTPUT REGULATION OF

UNCERTAIN LINEAR SYSTEMS

2.1 ABSTRACT

The H∞ output regulation problem, or game output regulation problem (GORP),

is mainly concerned with the design of controllers to achieve asymptotic tracking while

rejecting both modeled and unmodeled disturbances. With uncertain matrices in the state

equation, this paper develops a novel data-driven adaptive optimal control approach solving

the GORP of a class of continuous-time linear systems. A key strategy is to combine for

the first time techniques from reinforcement learning (RL), H∞ optimal control, and output

regulation for data-driven control design. Different from the previous work in the present

literature of the adaptive optimal output regulation, the feedforward matrix of the controlled

plant is considered nontrivial. Theoretical analysis and simulation results demonstrate the

efficacy of the developed data-driven control approach.

2.2 INTRODUCTION

Output regulation theory deals with the problems of designing a feedback controller

to reject nonvanishing disturbances while forcing the output of a dynamical system to track

a desired trajectory (Isidori, Marconi, & Serrani, 2003; Huang, 2004; Trentelman, Stoorvo-

gel, & Hautus, 2002; Bonivento, Marconi, & Zanasi, 2001; Meng, Yang, Dimarogonas, &

Johansson, 2015; Su & Huang, 2015; Serrani, Isidori, & Marconi, 2001) and many refer-

ences therein—which have established the importance of the output regulation theory and

its relevance to many real-world applications. Through minimizing a given cost function,

the optimal control and the output regulation theories have been combined to design op-

timal output regulators (Saberi, Stoorvogel, Sannuti, & Shi, 2003; Krener, 1992). In the
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framework of traditional output regulation, both the disturbance and the reference are gen-

erated by an autonomous system, named exosystem—wherein the unmodeled disturbance

is usually not considered. Yaghmaie established a more practical case, i.e., H∞ output

regulation problem, in the presence of modeled and unmodeled disturbances (Yaghmaie,

Movric, Lewis, Su, & Sebek, 2018). The H∞ optimal control and output regulation tech-

niques are efficiently combined for robust model-based control design.

The H∞ optimal control is related to zero-sum differential games with two players;

the controller (player 1) and the unmodeled disturbance (player 2) which are the minimiz-

ing and the maximizing players, respectively (Başar & Bernhard, 2008). Hence the H∞

output regulation problem can also be called a game output regulation problem (GORP).

Notice that most of the existing control solutions to output regulation problems and GORP

are model-based, which means that an accurate knowledge of system model is absolutely

needed. Since identifying a perfect system model is often time-consuming and costly, and

involves modeling errors, it is imperative to develop data-driven controllers without relying

on the system dynamics.

The terminology “data-driven” is originally from computer science, which has been

in the vocabulary of the control community recently. Reinforcement learning (RL) is a

practically sound data-driven adaptive optimal control technique. The RL is able to be

used in learning the optimal control policy and value function based on the online state

and input data, instead of system dynamics (Fan & Yang, 2016; Gao & Jiang, 2016b;

Y. Jiang et al., 2017; Mu et al., 2017; Wang et al., 2016; H. Zhang et al., 2011; Rizvi &

Lin, 2017). The extension to RL-based control design with differential games has been

extensively studied as well (Vrabie, Vamvoudakis, & Lewis, 2013; Vamvoudakis & Lewis,

2012; Modares, Lewis, & Jiang, 2015; Wu & Luo, 2012; Al-Tamimi et al., 2007; Li, Liu, &

Wang, 2014). However, most of these extensions focus on the adaptive optimal stabilization

or tracking control. It is still an open problem to employ RL in developing data-driven
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adaptive optimal control solutions to GORP. In our previous work, we have developed an

adaptive optimal control approach to the output regulation problems based on RL (Gao &

Jiang, 2016a). The solutions to both algebraic Riccati equation and regulator equation are

iteratively approximated using online state and input data. The generalization to nonlinear

systems and a class of multi-agent systems has been studied (Gao, Liu, Odekunle, Yu, &

Lu, 2018; Gao & Jiang, 2018).

In this paper, we propose a novel data-driven adaptive optimal control approach to

GORP. All of the matrices in the state equation are assumed unknown. The optimal feed-

forward and feedback control gains are approximated by collected real-time data. As the

first contribution, this paper is the first time taking advantage of techniques from three

separately studied areas: RL, H∞ optimal control and output regulation. As the second

contribution, this paper leverages RL to achieve asymptotic tracking while rejecting both

modeled and unmodeled disturbances. The third contribution is that we consider the chal-

lenging and practical case that the feedforward matrix of the controlled plant is nontrivial,

which is different from our previous work (Gao & Jiang, 2016b). This challenge is ad-

dressed by proposing a novel algorithm solving the regulator equations in the presence of

the feedforward matrix. Interestingly, all the information needed by this methodology can

be computed by online data, instead of the state and input matrices. Therefore, this method-

ology can be well applied as a part of proposed data-driven control solution to GORP.

The remainder of this note is organized as follows: In Section 2.3, we will formulate

the GORP, and present basic results in output regulation, H∞ optimal control, and game

algebraic Riccati equation (GARE). In Section 2.4, we first propose a solution to regulator

equations with known parameters. Then, an RL-based algorithm for solving the GORP will

be developed and the convergence and tracking ability analyses will also be given therein.

To ascertain the validity of the proposed algorithm in this paper, an illustrative example is

examined in Section 2.5. Finally, conclusions and future work are contained in Section 2.6.
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2.3 PROBLEM FORMULATION AND PRELIMINARIES

In this section, we formulate the zero-sum game output regulation problem (GORP)

with two players. Then, some fundamentals of optimal control theory and a policy iter-

ation technique to solve the corresponding game algebraic Riccati equation (GARE) and

regulator equation will be reviewed.

2.3.1 PROBLEM FORMULATION

Consider a class of linear continuous-time systems described by

ẋ = Ax+B1u+B2ω +Gv, (2.1)

v̇ = Ev, (2.2)

e = Cx+Du+ Fv, (2.3)

where x ∈ R
n is the state vector, u ∈ R

m the control input, and v ∈ R
q the state of the

exosystem (3.2). The exosystem generates both the non-vanishing disturbance g = Gv

and the reference y0 = −Fv for the output of the plant y = Cx + Du ∈ R
r. e ∈ R

r

is the tracking error. ω ∈ R
d is an unmodeled square integrable disturbance. A ∈ R

n×n,

B1 ∈ R
n×m, B2 ∈ R

n×d, C ∈ R
r×n, E ∈ R

q×q and F ∈ R
r×q, and G ∈ R

n×q are constant

matrices. Two standard assumptions are made throughout this paper.

Assumption 2.3.1. (A,B1) is stabilizable.

Assumption 2.3.2. The zero-transmission condition, i.e rank







A− λI B1

C D






= n + r,

∀λ ∈ σ(E), holds.

The output regulation problem is mainly related to the design of a controller such that

1) the closed-loop system is exponentially stable at the origin when v(t) ≡ 0 and ω(t) ≡ 0;

and 2) the tracking error e(t) asymptotically converges to zero for any initial conditions
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x(0) and v(0) while ω(0) = 0. In the absence of unmodeled disturbance ω, one can solve

the output regulation problem by solving a regulator equation stated in Lemma 3.1.

Lemma 2.3.1. ((Francis, 1977)) Under Assumption 2.3.1, choose a control gain K such

that σ(A− B1K) ⊂ C
−. The output regulation problem is solvable by the controller

u = −Kx+ Lv (2.4)

if there exist matrices X ∈ R
n×q, U ∈ R

m×q being solutions of the following regulator

equations:

XE =AX +B1U +G, (2.5)

0 =CX +DU + F (2.6)

with

L = U +KX. (2.7)

Remark 2.3.1. Assumption 3.3.1 ensures the solvability of regulator equations (2.5)–(2.6)

for any matrices G,F ; see (Huang, 2004).

Recalling from (Krener, 1992), if the solution to the regulation equations (2.5)–(2.6) is

not unique, one can find an optimal solution (X∗, U∗) by solving the following optimization

problems.

Problem 2.3.1.

min
(X,U)

Tr(XT Q̄X + UT R̄U) (2.8)

subject to (2.5)− (2.6),

where Q̄ = Q̄T > 0, R̄ = R̄T > 0.
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Letting x̄ = x−X∗v, ū = u− U∗v, it is direct to obtain the error system as follows

˙̄x = Ax̄+B1ū+B2ω, (2.9)

e = Cx̄+Dū. (2.10)

Considering the effect of unmodeled disturbance ω, the GORP is defined as follows:

Definition 1. The GORP is solved if one designs the feedback controller

ū = −K∗x̄, (2.11)

and disturbance policy

ω = N∗x̄, (2.12)

where the control gains K∗ and N∗ are obtained from the solution to the following con-

strained minimax problem:

Problem 2.3.2.

min
ū

max
ω

∫ ∞

0

(x̄TQx̄+ ūTRū− γ2ωTω)dt

subject to (2.9),

where Q = QT > 0, R = RT > 0, γ ≥ γ∗ ≥ 0. The γ∗ is named H-infinity gain.

Remark 2.3.2. Let the performance output be z =







√
Qx̄
√
Rū






. The system with the designed

optimal control policy (2.11) achieves

∫ ∞

0

‖z‖2dτ ≤ γ2

∫ ∞

0

‖ω‖2dτ. (2.13)

for any square integrable disturbance ω. The closed-loop system has L2 gain less than or

equal to γ (Van Der Schaft, 1992).
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Remark 2.3.3. By Definition 1, it is checkable that the optimal feedback control input

(2.11) can be written as

u = −K∗x+ L∗v, (2.14)

while the feedforward control gain is L∗ = U∗ + K∗X∗. The corresponding unmodeled

disturbance policy (2.12) can be represented as

ω = N∗x−N∗X∗v. (2.15)

2.3.2 REVIEW OF OPTIMAL CONTROL THEORY

Problem 2.3.2 is a standard linear quadratic regulator (LQR) design problem. By lin-

ear optimal control theory (Lewis, Vrabie, & Syrmos, 2012), the optimal feedback control

gain K∗ and disturbance gain N∗ are

K∗ =R−1BT
1 P

∗, (2.16)

N∗ =γ−2BT
2 P

∗, (2.17)

respectively. These gains can obtained by solving for P ∗ = P ∗T > 0 the following game

algebraic Riccati equation (GARE)

ATP ∗+P ∗A+Q

−P ∗(B1R
−1BT

1 − γ−2B2B
T
2 )P

∗ = 0. (2.18)

Since (2.18) is nonlinear in P ∗, it is usually difficult to directly solve P ∗ from (2.18).

A model-based policy iteration algorithm—i.e., Algorithm 1—for solving GARE was es-

tablished in (Modares et al., 2015; Wu & Luo, 2012), and is recalled below.

2.4 MAIN RESULTS

In this section, we first present a solution to regulator equations with known dynamics.

Then, with unknown system matrices A,B1, B2, and G, we develop an RL algorithm to
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Algorithm 1 Model-Based Algorithm for Solving GARE

1: Select a threshold ǫ1 > 0. Choose a stabilizing feedback control gain K0, and a distur-

bance gain N0.

2: j ← 0

3: repeat

4: Solve Pj from

(A−B1Kj +B2Nj)
TPj + Pj(A− B1Kj +B2Nj)

+Q+KT
j RKj − γ2NT

j Nj = 0 (2.19)

5: Solve Kj+1 by

Kj+1 = R−1BT
1 Pj (2.20)

6: Solve Ni+1 by

Nj+1 = γ−2B2
TPj (2.21)

7: j ← j + 1

8: until |Pj − Pj−1| < ǫ1

solve the regulator equation X∗, U∗ and to approximate the optimal solution P ∗ to GARE,

and optimal gains K∗ and N∗. The convergence of the algorithm and the tracking ability

of the closed-loop system are analyzed as well.

2.4.1 SOLVING REGULATOR EQUATIONS WITH KNOWN DYNAMICS

Define two maps S : Rn×q → R
n×q and S̄ : Rn×q × R

m×q → R
n×q by

S(X) =XE − AX,

S̄(X,U) =XE − AX − BU, X ∈ R
n×q, U ∈ R

m×q.
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Pick two constant matrices X1 ∈ R
n×q and U1 ∈ R

m×q such that

0 = CX1 +DU1 + F.

Then we select Xi ∈ R
n×q and Ui ∈ R

m×q for i = 2, 3, · · · , h+ 1 such that all the vectors

vec([XT
i , U

T
i ]

T ) form a basis for ker(Iq ⊗ [C,D]), where h is the dimension of the null

space of Iq ⊗ [C,D].

The following lemma shows a methodology to find the solution to regulator equations

(2.5)–(2.6) with nontrivial feedforward matrix D.

Lemma 2.4.1. The pair (X,U) solves the regulator equations (2.5)–(2.6) if and only if it

satisfies the following matrix equation

Aχ = b, (2.22)

where

A =







vec([XT
2 , U

T
2 ]

T ) · · · vec([XT
h+1, U

T
h+1]

T ) −Inq
vec(S̄(X2, U2)) · · · vec(S̄(Xh+1, Uh+1)) 0nq×nq






,

χ =[α2, · · · , αh+1, (vec([X
T
1 , U

T
1 ]

T ))T ]T ,

b =







vec([XT
1 , U

T
1 ]

T )

vec(−S(X1, U1) +G)






.

As it can be checked, each solution to (2.6) can be described by a sequence of α2, α3, · · · , αh+1 ∈

R as

(X,U) =(X1, U1) +
h+1
∑

i=2

αi(Xi, Ui). (2.23)

Combining (2.5) and (2.23), and based on the linearity of mapping S̄ , we have

S̄(X,U) = S̄(X1, U1)) +
h+1
∑

i=2

αiS̄(Xi, Ui) = G. (2.24)
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It immediately shows a pair (X,U) is a solution to (2.5)–(2.6) if and only if the pair satisfies

(2.23)–(2.24). By vectorization, (2.23) can be written as

h+1
∑

i=2

αivec













Xi

Ui












− vec













X

U












= −vec













X1

U1












, (2.25)

while (2.24) can be written as

h+1
∑

i=2

αivec(S̄(Xi, Ui)) = vec(−S(X1, U1) +G). (2.26)

Combining (2.25)–(2.26), we have (2.22). The proof is thus completed. �

2.4.2 DATA-DRIVEN ADAPTIVE OPTIMAL CONTROLLER DESIGN

Defining x̄i = x−Xiv, for i = 0, 1, 2, · · · , h+ 1 with X0 = 0n×q, from (2.1)–(2.2),

we have

˙̄xi =Ax+B1u+B2ω + (G−XiE)v

=A(x̄i +Xiv) + B1u+B2w + (G−XiE)v

=Ajx̄i +B1(Kjx̄i + u) + B2(ω −Njx̄i)

+ (G− S(Xi))v, (2.27)

where Aj = A− B1Kj +B2Nj .
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Then, by equation (2.19), we have

x̄i(t+ δt)TPjx̄i(t+ δt)− x̄i(t)
TPjx̄i(t)

=

∫ t+δt

t

[

x̄T
i (A

T
j Pj + PjAj)x̄i + 2(u+Kjx̄i)

TBT
1 Pjx̄i

+2vT (G− S(Xi))
TPjx̄i + 2(ω −Njx̄i)

TBT
2 Pjx̄i

]

dτ

=−
∫ t+δt

t

x̄T
i (Q+KT

j RKj − γ2NT
j Nj)x̄idτ

+ 2

∫ t+δt

t

(u+Kjx̄i)
TRKj+1x̄idτ

+ 2

∫ t+δt

t

vT (G− S(Xi))
TPjx̄idτ

+ 2γ2

∫ t+δt

t

(ω −Njx̄i)
TNj+1x̄idτ. (2.28)

By Kronecker product representation, we obtain

x̄T
i (Q+KT

j RKj − γ2NT
j Nj)x̄i

=(x̄T
i ⊗ x̄T

i )vec(Q+KT
j RKj − γ2NT

j Nj),

vT (G− S(Xi))
TPjx̄i

=(x̄T
i ⊗ vT )vec((G− S(Xi))

TPj),

(u+Kjx̄i)
TRKj+1x̄i

=[(x̄T
i ⊗ x̄T

i )(In ⊗KT
j R)

+ (x̄T
i ⊗ uT )(In ⊗R)]vec(Kj+1),

(ω−Njx̄i)
TNj+1x̄i

=[(x̄T
i ⊗ ωT )− (x̄T

i ⊗ x̄T
i )(In ⊗NT

j )]vec(Nj+1).
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Moreover, for positive integer s, define

δx̄ix̄i
=[vecv(x̄i(t1))− vecv(x̄i(t0)), vecv(x̄i(t2))−

vecv(x̄i(t1)), · · · , vecv(x̄i(ts))− vecv(x̄i(ts−1))]
T ,

Γx̄ix̄i
=[

∫ t1

t0

x̄i ⊗ x̄idτ,

∫ t2

t1

x̄i ⊗ x̄idτ, · · · ,
∫ ts

ts−1

x̄i ⊗ x̄idτ ]
T ,

Γx̄iu =[

∫ t1

t0

x̄i ⊗ udτ,

∫ t2

t1

x̄i ⊗ udτ, · · · ,
∫ ts

ts−1

x̄i ⊗ udτ ]T ,

Γx̄iv =[

∫ t1

t0

x̄i ⊗ vdτ,

∫ t2

t1

x̄i ⊗ vdτ, · · · ,
∫ ts

ts−1

x̄i ⊗ vdτ ]T ,

Γx̄iω =[

∫ t1

t0

x̄i ⊗ ωdτ,

∫ t2

t1

x̄i ⊗ ωdτ, · · · ,
∫ ts

ts−1

x̄i ⊗ ωdτ ]T ,

where t0 < t1 < · · · < ts are positive integers. Hence, (4.12) implies the following linear

equation

Ψij



















vecs(Pj)

vec(Kj+1)

vec((G− S(Xi))
TPj)

vec(Nj+1)



















= Φij, (2.29)

where

Ψij = [δx̄ix̄i
,−2Γx̄ix̄i

(In ⊗ (KT
j R)− 2Γx̄iu(In ⊗R),

− 2Γx̄iv,−2γ2(Γx̄iω − Γx̄ix̄i
(In ⊗NT

i ))],

Φij = −Γx̄ix̄i
vec(Q+ (Kj)

TRKj − γ2NT
i Ni).

Equation (2.29) can be uniquely solved when matrix Ψij is of full column rank, i.e.,



















vecs(Pj)

vec(Kj+1)

vec((G− S(Xi))
TPj)

vec(Nj+1)



















= (ΨT
ijΨij)

−1ΨT
ijΦij. (2.30)
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Remark 2.4.1. Like in the previous work of others, an exploration noise ξ is needed in the

learning phase to excite the system such that Ψij has full column rank. Examples of such

noise are random noise (Al-Tamimi et al., 2007) and sinusoidal signal (Y. Jiang & Jiang,

2012).

From (2.29), one can compute G for i = 0 and S(Xi) for i = 1, 2, · · · , h + 1. From

(2.20), for any j > 0, one can further obtain the map S̄ by

S̄(Xi, Ui) = S(Xi)− P−1
j KT

j+1RUi. (2.31)

Thus, both A and b in (2.22) are computable. By Lemma 2.4.1, we can replace the con-

straint of Problem 2.3.1 by (2.22). Problem 2.3.1 is essentially a convex optimization

problem that has been studied in the past literature (Boyd & Vandenberghe, 2004).

The data-driven RL algorithm for dealing with GORP is presented as follows.

The convergence of Algorithm 2 is discussed in the following Theorem.

Theorem 2.1. The sequences {Pj}∞j=0, {Kj}∞j=1 and {Nj}∞j=1 obtained from Algorithm 2

converge to P ∗ and K∗, and N∗, respectively.

Given a stabilizing Kj , if Pj = P T
j is the solution to (2.19), Kj+1

i and Ni is determined

by Kj+1 = R−1BT
1 Pj and Nj+1 = γ−2BT

2 Pj , respectively. Let Tij = (G−S(Xi))
TPj . By

(2.28), we know that Pj , Kj+1, Nj+1 and Tij satisfy (2.29).

Therefore, the policy iteration (2.29) is equivalent to (2.19)–(2.21) in Algorithm 1.

The convergence of Algorithm 1 has been proved in (Zhu, Modares, Peen, Lewis, & Yue,

2015; Wu & Luo, 2012). This ensures the convergence of Algorithm 2. The proof is

completed.

Now, we are ready to show the tracking ability of the closed-loop system.

Theorem 2.2. Considering the linear continuous-time system (2.1)–(2.3), let

u = −K†x+ L†v (2.32)
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Algorithm 2 Data-Driven Algorithm for Solving GORP

1: Select a threshold ǫ2 > 0. Compute matrices X0, X1, · · · , Xh+1 and U0, U1, · · · , Uh+1

2: Apply u = −K0x+ ξ on [t0, ts] with (bounded) exploration noises ξ

3: j ← 0, i← 0

4: repeat

5: Solve Pj , Kj+1 and Nj+1 from (3.44)

6: j ← j + 1

7: until |Pj − Pj−1| < ǫ2

8: Obtain the approximated optimal control gains K† and N †, and approximated solution

P † to (3.14)

9: repeat

10: Solve S(Xi) from (3.44)

11: i← i+ 1

12: until i = h+ 2

13: Obtain (X∗, U∗) by solving Problem 2.3.1

14: Obtain the approximate optimal feedforward control gain L† = U∗ +K†X∗

and be the approximated optimal control with control gains K† and L† obtained from

Algorithm 2. Then, the tracking error e(t) asymptotically converges to zero.

The system (2.1)–(2.3) in closed-loop with the approximated optimal controller (2.32)

implies the following error system

˙̄x =Ax̄+B1ū+B2ω

:=(A− B1K
†)x̄+B2ω,

e =Cx̄.
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From the GARE, there exists a small enough ǫ2 such that the following inequality holds

ATP †+P †A+
Q

2

−P †(B1R
−1BT

1 − γ−2B2B
T
2 )P

† < 0. (2.33)

The inequality can be rewritten by

(A− BK†)TP †+P †(A− BK†) +
Q

2
+ (K†)TRK†

+ γ−2P †B2B
T
2 P

† < 0. (2.34)

Choose a function V = x̄TP †x̄, take the derivative around the solution of the error

system

V̇ =x̄T (A− B1K
†)TP †x̄+ x̄TP †(A− B1K

†)x̄

+ 2x̄TP †B2ω

=− 1

2
x̄TQx̄− ūTRū− ‖γ−1BT

2 P
†x̄‖2

+ 2x̄TP †B2ω

≤− λmin(Q)

2
‖x̄‖2 − λmin(R)‖ū‖2

− ‖γ−1BT
2 P

†x̄− γω‖2 + γ2‖ω‖2 (2.35)

Integrating (2.35) from t = 0 to t =∞, we have

∫ ∞

0

(
λmin(Q)

2
‖x̄‖2 + λmin(R)‖ū‖2)dt

≤γ2

∫ ∞

0

‖ω‖2dt+ V (x(0))− lim
t→∞

V (x(t))

≤γ2

∫ ∞

0

‖ω‖2dt+ V (x(0))

<∞ (2.36)

Through Barbalat’s lemma (Khalil, 2002), we have lim
t→∞

ū(t) = 0, lim
t→∞

x̄(t) = 0. It is

immediate to have lim
t→∞

e(t) = lim
t→∞

Cx̄(t) = 0. The proof is completed.
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Figure 2.1: Convergence of Pj to its Optimal Value P ∗ during the Learning Process

Remark 2.4.2. The exostate v is supposed measurable in this paper. when unmeasurable,

we can use Gao’s method to reconstruct the exostate with the knowledge of the minimal

polynomial of E (Gao & Jiang, 2016a).

2.5 ILLUSTRATIVE EXAMPLE

To validate the effectiveness of the proposed data-driven Algorithm 2, we consider a

continuous-time linear system with the following parameters:

A =







0 1

−1 −3






, B1 =







0

0.6






, B2 =







1

4






, C =







1

0







T

,

D =1, E =







0 1

−1 0






, F =







−1

0







T

, G =







0 0

0 0.5






. (2.37)

These system matrices A,B1, B2, and G are assumed to be unknown, the weight ma-

trices (Q and R) are identity matrices, and γ is 11. For the purpose of simulation, the ex-

ploration noise is selected as a summation of sinusoidal waves with different frequencies.
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Figure 2.2: Convergence of Kj to its Optimal Value K∗ during the Learning Process
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Figure 2.3: Convergence of Nj to its Optimal Value N∗ during the Learning Process
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Figure 2.4: Trajectories of the Output and Reference

Convergence is achieved after 6 iterations when implementing the proposed Algorithm 2.

The approximated control gains K† and N † captured and their optimal values K∗ and N∗

are:

K6 =

[

0.309955 0.202105

]

,

K∗ =

[

0.309954 0.202102

]

,

and

N6 =

[

0.0326835 0.0154046

]

,

N∗ =

[

0.0326834 0.0154047

]

.

The comparison of feedforward gains is

L6 =

[

0.309993 4.368750

]

,

L∗ =

[

0.309954 4.368770

]

.

Fig. 2.4 shows that the obtained data-driven approximated optimal controller makes the

output of the plant to asymptotically track the given reference signal.
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2.6 CONCLUSIONS

This paper proposes a novel reinforcement learning based approach to the adaptive

optimal output regulation of linear systems with zero-sum differential games. A system-

atic data-driven control scheme is proposed for designing adaptive optimal trackers with

guaranteed rejection of nonvanishing disturbance. Future work will be directed at general-

izing the proposed method for the adaptive optimal tracking problem of uncertain nonlinear

systems using differential games.
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CHAPTER 3

DATA-DRIVEN GLOBAL ROBUST OPTIMAL OUTPUT REGULATION OF

UNCERTAIN PARTIALLY LINEAR SYSTEMS

3.1 ABSTRACT

In this paper, a data-driven control approach is developed by reinforcement learning

(RL) to solve the global robust optimal output regulation problem (GROORP) of partially

linear systems with both static uncertainties and nonlinear dynamic uncertainties. By de-

veloping a proper feedforward controller, the GROORP is converted into a global robust

optimal stabilization problem. A robust optimal feedback controller was designed which

is able to stabilize the system in the presence of dynamic uncertainties. The closed-loop

system is assured to be input-to-output stable regarding the static uncertainty as the exter-

nal input. This robust optimal controller is numerically approximated via RL. Nonlinear

small-gain theory is applied to show the input-to-output stability for the closed-loop sys-

tem and thus solves the original GROORP. Simulation results validate the efficacy of the

proposed methodology.

3.2 INTRODUCTION

The output regulation problem aims at designing control strategies to achieve the re-

jection of a nonvanishing disturbance and forces the output of dynamic systems to asymp-

totically track a desired reference. This problem has been tackled for linear systems since

1970s (Francis, 1977). Due to its relevance to many real-world applications, the output

regulation problem for nonlinear systems has also attracted considerable attention with fo-

cus on either local, semi-global or global stabilization (Isidori & Byrnes, 1990; Huang &

Rugh, 1990; Byrnes, Priscoli, Isidori, & Kang, 1997; Serrani et al., 2001; Huang, 2004).

In most existing output regulation problems, both the nonvanishing disturbance and
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the reference are generated by an autonomous system, named exosystem—wherein the

unmodeled disturbance is neglected. Yaghmaie considered a more generalized case; H∞

output regulation problem, where both the nonvanishing and unmodeled disturbances were

considered (Yaghmaie et al., 2018). This H∞ optimal control and output regulation tech-

niques are efficiently combined for robust model-based control design. The H∞ optimal

control can be formulated a zero-sum differential game involving two players; the con-

troller (player 1) and the unmodeled disturbance (player 2) which are the minimizing and

maximizing players, respectively (Başar & Bernhard, 2008). In this setting, one can solve

the output regulation problem for the system with unmodeled disturbances which are static

uncertainties. Considering a nonlinear system with dynamic uncertainties, the notion of

input-to-state stability and small-gain theory (Gao & Jiang, 2015c, 2015a) have been em-

ployed to solve the global robust output regulation problems (Huang & Chen, 2004). How-

ever, we are not aware of any existing work on output regulation problems that take both

static and dynamic uncertainties into consideration. Also, it is noteworthy that most of

the existing control strategies to output regulation problems are model-based, which means

that an accurate knowledge of system’s model is absolutely needed.

Reinforcement Learning (RL) is a non-model-based and data-driven approach which

solves optimal control problems via online state and input information (Lewis & Vrabie,

2009). RL has been used to design optimal feedback controllers for both continuous-time

and discrete-time systems wherein optimal cost and feedback controllers are computed

using online data (Y. Jiang & Jiang, 2012; Gao, Jiang, Jiang, & Chai, 2014; Lewis &

Vrabie, 2009; Gao, Jiang, & Ozbay, 2015; Gao & Jiang, 2015b; B. Sun et al., 2018). Jiang

proposed, a robust data-driven approach solve control problems in linear and nonlinear

systems with dynamic uncertainties (Y. Jiang & Jiang, 2014). Gao extends the solution to

global optimal output regulation problems by incorporating dynamic uncertainties in the

system (Gao & Jiang, 2015b). The exact knowledge of system dynamics and dynamic
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uncertainties are not required to design the robust optimal controllers.

This paper aims at proposing a novel data-driven solution to the global robust optimal

output regulation problem (GROORP) for a class of partially linear composite systems. It

is challenging since the system studied in this paper is with unknown dynamics, and both

static and dynamic uncertainties. First, we convert the GROORP into a global robust opti-

mal stabilization problem. Then a data-driven approach is developed to compute the robust

adaptive optimal controller and disturbance policy via online input and state information.

In the presence of dynamic uncertainty, the rejection of nonvanishing disturbance and the

output trajectories asymptotically tracking the desired reference is achieved. With both

the static and dynamic uncertainty, it is guaranteed that the closed-loop system is input-

to-output stable with the static uncertainty acting as an the external input. Optimality and

global output regulation are both achieved for the class of partially linear systems.

The remainder of this paper is organized as follows. In Section II, we briefly review

the linear optimal output regulation problem and linear optimal control theory. Consider-

ing static and nonlinear dynamic uncertainties, we formulate the GROORP for a class of

partially linear systems in Section III. An offline solution on the basis of nonlinear small-

gain theory is proposed therein. In Section IV, the RL technique is employed to design a

robust optimal controller via online data. Simulation results on a partially linear system are

provided in Section V. Finally, concluding remarks are given in Section VI.

3.3 ROBUST OPTIMAL OUTPUT REGULATION OF LINEAR SYSTEMS

Considering a class of linear systems with nonvanishing disturbance and reference

signals generated by linear exosystems, the robust optimal output regulation problem (ROORP)

is formulated by minimizing both static and dynamic optimization problems. Then, we re-

call the basics of robust control and policy iteration (PI) technique. An approach explicitly

solving the regulator equation is presented as well.
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3.3.1 PROBLEM FORMULATION

To begin with, consider the linear system

ẋ = Ax+B1u+B2ω +Dv, (3.1)

v̇ = Ev, (3.2)

y = Cx, (3.3)

yd = −Fv, (3.4)

e = y − yd (3.5)

where x ∈ R
n is the state vector, u ∈ R

m the control input, and v ∈ R
q the state of the

exosystem (3.2). The exosystem generates both the nonvanishing disturbance η = Dv and

the reference y0 = −Fv for the output of the plant y = Cx ∈ R
r. e ∈ R

r is the tracking

error. ω ∈ R
d is an unmodeled square integrable disturbance. A ∈ R

n×n, B1 ∈ R
n×m,

B2 ∈ R
n×d, C ∈ R

r×n, E ∈ R
q×q, F ∈ R

r×q, and D ∈ R
n×q are system matrices with

(A,B1) stabilizable. Throughout this paper, the following assumptions are made.

Assumption 3.3.1. The transmission zeros condition holds, i.e.,

rank







A− λI B1

C 0






= n+ r, ∀λ ∈ σ(E). (3.6)

Assumption 3.3.2. All the eigenvalues of E are simple with zero real part.

Based on Assumptions 3.3.1-3.3.2, one can get the following technical result.

Theorem 3.1. Let the feedback gain K ∈ R
m×n be such that σ(A − B1K) ∈ C

−. Then,

if a controller is designed as u = −K(x − Xv) + Uv, where X ∈ R
n×q and U ∈ R

m×q

solve the following equations:

XE = AX +B1U +D,

0 = CX + F, (3.7)
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then the closed-loop linear system achieves disturbance rejection and asymptotic tracking.

Proof. Letting x̄ = x−Xv, ū = u− Uv and using (3.7), we have

˙̄x = Ax+B1u+B2ω +Dv −XEv

= Ax− B1K(x−Xv) + (B1U +D)v +B2ω −XEv

= (A− B1K)x̄+B2ω. (3.8)

Since σ(A−B1K) ∈ C
− and w(t) is square integrable, we observe lim

t→∞
x̄(t) = 0 and

lim
t→∞

ū(t) = 0, which implies lim
t→∞

e(t) = lim
t→∞

Cx̄(t) = 0. The proof is completed.

Remark 3.3.1. (3.7) is called the linear regulator equation. Assumption 3.3.1 is made such

that (3.7) is solvable for any matrices D,F (Huang, 2004).

Inspired by Gao, 2015d and Krener, 1992, we tackle the robust optimal output regula-

tion problem (ROORP) by solving a static optimization Problem 3.3.1 to find the optimal

solution (X∗, U∗) to (3.7) and a dynamic optimization Problem 3.3.2 to find the optimal

gains K∗ and N∗.

Problem 3.3.1.

min
(X,U)

Tr(XT Q̄X + UT R̄U), (3.9)

subject to (3.7)

where Q̄ = Q̄T > 0, R̄ = R̄T > 0.

One can write the error system of (3.1)-(3.5) as:

˙̄x∗ = Ax̄∗ +B1ū
∗ +B2ω, (3.10)

e = Cx̄∗ (3.11)

where x̄∗ = x−X∗v, ū∗ = u− U∗v.
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Problem 3.3.2.

min
ū

max
ω

∫ ∞

0

[(x̄∗)TQx̄∗ + (ū∗)T ū∗ − γ−2ωTω]dt

subject to (3.10)− (3.11),

where Q = QT > 0, and γ ≥ γ∗ ≥ 0. The γ∗ is named by H∞ gain.

Remark 3.3.2. In order to solve the ROORP, we ought to design a control policy u =

−K∗(x−X∗v) +U∗v and a disturbance policy ω = N∗(x−X∗v) where optimal control

gains K∗ and N∗, and optimal regulator parameters X∗ and U∗ are achieved by solving

optimization Problems 3.3.1 and 3.3.2. Theorem 3.1 ensures that the resultant closed-loop

system achieves disturbance rejection and asymptotic tracking.

Remark 3.3.3. It is shown in (Gao & Jiang, 2016a, Remark 5) that the Problem 3.3.1 can

be converted as a convex optimization problem with a quartic cost and linear constraints.

The solution to the Problem 3.3.1 is unique given positive definite matrices Q̄ and R̄. The

motivation of introducing the Problem 3.3.1 is to optimize the steady-state behavior the

system.

3.3.2 H∞ CONTROL AND POLICY ITERATION (PI)

By linear optimal control theory, we design an optimal feedback controller ū∗ =

−K∗x̄∗ and a disturbance policy ω∗ = N∗x̄∗ to minimize the cost of Problem 3.3.2. The

optimal feedback control gain K∗ and disturbance gain N∗ are

K∗ = B1
TP ∗, (3.12)

N∗ = γ−2B2
TP ∗, (3.13)
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respectively, with P ∗ = P ∗T > 0 the unique solution to the following game algebraic

Riccati equation (GARE)

ATP ∗+P ∗A+Q

−P ∗(B1B
T
1 − γ−2B2B

T
2 )P

∗ = 0. (3.14)

Remark 3.3.4. From (3.12) to (3.14), computing K∗ and N∗ does not depend on X∗, U∗.

Problems 3.3.1 and 3.3.2 can be solved separately.

Lemma 3.3.1 ((Modares et al., 2015)). Let K0 ∈ R
m×n be any stabilizing control gain, and

let N0 ∈ R
d×n be a zero matrix. Pj = P T

j > 0 is the solution to the following Lyapunov

equation

(A−B1Kj +B2Nj)
TPj + Pj(A− B1Kj +B2Nj)

+Q+KT
j Kj − γ2NT

j Nj = 0 (3.15)

where Kj and Nj , with j = 1, 2, · · · , are defined by

Kj =BT
1 Pj−1 (3.16)

Nj =γ−2BT
2 Pj−1 (3.17)

Then, the following properties hold:

1. σ(A− B1Kj) ∈ C
−,

2. P ∗ ≤ Pj+1 ≤ Pj,

3. lim
j→∞

Kj = K∗, lim
j→∞

Nj = N∗ and lim
j→∞

Pj = P ∗.

3.3.3 SOLVING REGULATOR EQUATIONS

Define a Sylvester map S : Rn×q → R
n×q by

S(X) = XE − AX,X ∈ R
n×q. (3.18)
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If we choose a X1 ∈ R
n×q such that CX1+F = 0, and Xi ∈ R

n×q, for i = 2 · · ·h+1,

such that all the vec(Xi) form a basis of ker(Iq ⊗ C), where h is the nullity of Iq ⊗ C,

then a pair (X0
† , U

0
† ) is a solution to the regulator equation (3.7) if and only if there exist

α0
2, α

0
3, · · · , α0

h+1 ∈ R such that

S(X0
† ) = B1U

0
† +D, (3.19)

X0
† = X1 +

h+1
∑

i=2

α0
iXi. (3.20)

If the solution is not unique, we find all linearly independent vectors vec(







Xk
†

Uk
†






) by

seeking sequences αk
i ∈ R such that, for k = 1, 2, · · · , H with H = q(m− r),

Xk
† =

h+1
∑

i=2

αk
iXi, BUk

† =
h+1
∑

i=2

αk
i S(Xi). (3.21)

Then, the solution set of (3.7) is equivalent to

S ={(X,U)|X = X0
† +

H
∑

k=1

βkX
k
† , U = U0

† +
H
∑

k=1

βkU
k
† ,

∀β1, β2, · · · , βH ∈ R}. (3.22)

If we compute S(Xi) for i = 0, 1, · · · , h + 1 by online data, the solution set of the

regulator equation (3.7) is obtained with unknown system matrices. The proposed method

for solving the regulator equation paves the way for online robust optimal controller design

in Section 3.5.

3.4 GLOBAL ROBUST OPTIMAL OUTPUT REGULATION OF PARTIALLY LINEAR

SYSTEMS

In this section, we formulate the GROORP of a class of partially composite linear

systems. An offline solution to the GROORP is given by developing a global robust optimal

controller.
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3.4.1 GROORP FORMULATION

Motivated by the class of partially linear systems in Saberi and Summers, 1990, we

study a general class of perturbed partially linear systems:

ζ̇ = g(ζ, y, v), (3.23)

ẋ = Ax+B1[u+∆(ζ, y, v)] + B2ω +Dv, (3.24)

v̇ = Ev, (3.25)

y = Cx, (3.26)

yd = −Fv, (3.27)

e = y − yd, (3.28)

where ζ ∈ R
p and v ∈ R

q represents the states of the dynamic uncertainty (3.23) and

the exosystem (3.25), respectively. The functions g(ζ, y, v) : Rp × R
r × R

q → R
p, and

∆(ζ, y, v) : Rp×R
r×R

q → R
m are sufficiently smooth functions satisfying g(0, 0, 0) = 0

and ∆(0, 0, 0) = 0. Suppose A,B1, B2, D, g,∆ are unknown with ζ unmeasurable (Saberi,

Kokotovic, & Summers, 1990).

Remark 3.4.1. The GROORP is solvable for the partially linear system (3.23)-(3.28) if a

robust optimal controller is found by solving optimization Problems 3.3.1 and 3.3.2 such

that for v : [0,∞)→ V with V being a prescribed compact set of Rq, any initial conditions

ζ(0), x(0), the trajectory of closed-loop system (3.23)-(3.28) exists and is bounded for any

t ≥ 0, and satisfies lim
t→∞

e(t) = 0 when ω ≡ 0. And the system is input-to-output stable for

nontrivial ω.

3.4.2 OFFLINE SOLUTIONS TO GROORP

Let Σv be the class of piecewise functions from [0,∞) to V . Then two assumptions

are made on the system (3.23)-(3.28):



45

Assumption 3.4.1. A sufficiently smooth function ζ(v) with ζ(0) = 0 exists satisfying the

following equation for any v ∈ R
q:

∂ζ(v)

∂v
Ev = g(ζ(v), yd, v),

0 = ∆(ζ(v), yd, v). (3.29)

Under equations (3.7) and (3.29), we write the error system of (3.23)-(3.28) by letting

ζ̄ = ζ − ζ(v),

˙̄ζ = ḡ(ζ̄ , e, v), (3.30)

˙̄x = Ax̄+B1[ū+ ∆̄(ζ̄ , e, v)] + B2ω, (3.31)

e = Cx̄, (3.32)

where

ḡ(ζ̄ , e, v) = g(ζ, y, v)− g(ζ(v), yd, v),

∆̄(ζ̄ , e, v) = ∆(ζ, y, v)−∆(ζ(v), yd, v).

Two assumptions are made on the dynamic uncertainty, i.e., ζ̄-system, with e as the

input and ∆̄ as the output.

Assumption 3.4.2. There exist a function σs of classKL and a function γs of classK, both

of which are independent of any v ∈ Σv such that for any measurable locally essentially

bounded e on [0, T ) with 0 < T ≤ +∞ and any v ∈ Σv, ζ̄(t) right maximally defined on

[0, T ′)(0 < T ′ ≤ T ) satisfies

|ζ̄(t)| ≤ σs(|ζ̄(0)|, t) + γs(‖[eT[0,t], ∆̄T
[0,t]]

T‖), ∀t ∈ [0, T ′),

where e[0,t] and ∆̄[0,t] are the truncated functions of e and ∆̄ over [0, t], respectively.

Assumption 3.4.3. There exist a function σ∆ of class KL and a function γ∆ of class K,

both of which are independent of any v ∈ Σv such that, for any initial state ζ̄(0), any
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measurable locally essentially bounded e on [0, T ) with 0 < T ≤ +∞ and any v ∈ Σv,

∆̄(t) right maximally defined on [0, T ′)(0 < T ′ ≤ T ) satisfies

|∆̄(t)| ≤ σ∆(|ζ̄(0)|, t) + γ∆(‖e[0,t]‖), ∀t ∈ [0, T ′). (3.33)

Remark 3.4.2. Assumptions 3.4.2 and 3.4.3 are made so that system (3.30) has strong

unboundedness observability (SUO) (Z. P. Jiang, Teel, & Praly, 1994) with zero-offset and

input-to-output stability (IOS) (Sontag, 2007) properties. Then by nonlinear small-gain

theory, a controller exists to globally asymptotically stabilize the error system (Huang &

Chen, 2004).

Theorem 3.2. Under Assumptions 3.4.2 and 3.4.3, let symmetric matrices Q ≥ γxIn, R =

Im with γx > 0. If the gain function γ∆(s) satisfies the following inequality

γ∆(s) ≤ (Id+ ρ1)
−1 ◦ γ−1

e ◦ (Id+ ρ2)
−1(s), ∀s ≥ 0 (3.34)

for γe(s) = |C|
√

1/γxs and ρ1, ρ2 of class K∞, then, for any exostate v, the error system

(3.30)-(3.32) in closed-loop with the optimal control policy ū = −K∗x̄ is globally asymp-

totically stable when ω ≡ 0. Moreover, when ω is nontrivial, the closed-loop system is

input-to-output stable regarding ω as an input (Z. P. Jiang et al., 1994).

Proof. The GARE can be rewritten as

(A− B1K
∗)TP ∗ + P ∗(A− B1K

∗) +Q

+ P ∗B1B
T
1 P

∗ + γ−2P ∗B2B
T
2 P

∗ = 0 (3.35)
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Differentiating the Lyapunov function V = x̄TP ∗x̄ gives

V̇ =x̄T [(A− B1K
∗)TP ∗ + P ∗(A− B1K

∗)]x̄+ 2x̄TP ∗B1∆̄

+ 2x̄TP ∗B2ω

=− x̄T (Q+ P ∗B1B
T
1 P

∗ + γ−2P ∗B2B
T
2 P

∗)x̄

+ 2x̄TP ∗B1∆̄ + 2x̄TP ∗B2ω

≤− x̄TQx̄− |∆̄− BT
1 P

∗x̄|2 − |γw − γ−1BT
2 P

∗x̄|2

+ |∆̄|2 + γ2|ω|2

≤− x̄TQx̄+ |∆̄|2 + γ2|ω|2

≤− γx|x̄|2 + |∆̄|2 + γ2|ω|2 (3.36)

for any t ≥ 0, we have

V (t) ≤ exp

(

− γx
λm(P ∗)

t

)

V (0) +
λm(P

∗)

γx
‖∆̄‖2

+
γ2λm(P

∗)

γx
‖ω‖2. (3.37)

An immediate consequence of the previous inequality is

|x̄(t)| ≤ exp

(

− γx
2λm(P ∗)

t

)

√

λM(P ∗)

λm(P ∗)
|x̄(0)|

+

√

1

γx
‖∆̄‖+ γ

√

1

γx
‖ω‖, ∀t ≥ 0, (3.38)

which implies that the x̄-system with the pair (∆̄, ω) as the input is input-to-state stable

(Sontag, 1989). One can write

|e(t)| ≤ σe(|x̄0|, t) + γe‖∆̄‖+ γγe‖ω‖, (3.39)

where

σe(|x̄0|, t) = |C| exp
(

− γx
2λm(P ∗)

t

)

√

λM(P ∗)

λm(P ∗)
|x̄0|
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is a function of KL and γe = |C|
√

1/γx, which guarantees that the x̄-system with e as out-

put has SUO property with zero-offset and IOS properties (Z. P. Jiang et al., 1994). On the

other hand, Assumptions 3.4.2 and 3.4.3 indicate that the ζ̄-system has SUO property with

zero-offset and IOS properties with input-to-output gain function γ∆(s). By the nonlinear

small-gain theory (Z. P. Jiang et al., 1994), under the following small-gain condition

(Id+ ρ2) ◦ γe ◦ (Id+ ρ1) ◦ γ∆(s) ≤ s, ∀s ≥ 0, (3.40)

the error system (3.30)-(3.32) with ū = −K∗x̄ is globally asymptotically stable at the

origin if ω ≡ 0. For a nontrivial square-integrable disturbance ω, one can achieve that the

closed-loop system is input-to-output stable regarding ω as an external input. �.

3.4.3 SOLVABILITY OF GROORP

Now, we are ready to design a robust optimal controller to solve the GROORP of the

partially linear system (3.23)-(3.28).

Theorem 3.3. Under the conditions of Assumptions 3.3.1, 3.3.2-3.4.3, if weight matrices

are chosen Q = QT ≥ γxIn, R = Im such that small-gain condition (3.40) holds, then

the GROORP of the partially linear system (3.23)-(3.28) is solvable by the robust optimal

controller u = −K∗(x−X∗v) + U∗v.

Proof. By Theorem 3.2, the robust optimal feedback controller ū∗ = −K∗x̄∗ globally

asymptotically stabilizes the error system (3.30)-(3.32) for any v(t). Then, the trajectory

of error system satisfies lim
t→∞

ζ̄(t) = 0 and lim
t→∞

x̄∗(t) = 0 for ω ≡ 0. We observe

lim
t→∞

e(t) = Cx̄∗(t) + (CX∗ + F )v(t) = 0, (3.41)

for any x(0), ζ(0). Also, it is checkable that the input-to-output stability of the closed-loop

system still holds. The proof is completed.
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3.5 RL ONLINE LEARNING

A novel online learning strategy is presented to solve X∗, U∗ and online approxima-

tion of optimal values P ∗ and K∗. In Jiang’s related work, he assumed ∆ is available during

the learning phase (Y. Jiang & Jiang, 2014). Defining x̄i = x−Xiv for i = 0, 1, 2, · · · , h+1

with X0 = 0n×q, we have

˙̄xi =Ax+B1(u+∆) + B2ω + (D −XiE)v

=Ajx̄i +B1(Kjx̄i + z) + B2(ω −Njx̄i)

+ (D − S(Xi))v, (3.42)

where Aj = A− B1Kj +B2Nj , z = u+∆.

Then

x̄i(t+ δt)TPjx̄i(t+ δt)− x̄i(t)
TPjx̄i(t)

=

∫ t+δt

t

[

x̄T
i (A

T
j Pj + PjAj)x̄i + 2(z +Kjx̄i)

TBT
1 Pjx̄i

+2vT (D − S(Xi))
TPjx̄i + 2(ω −Njx̄i)

TBT
2 Pjx̄i

]

dτ

=−
∫ t+δt

t

x̄T
i (Q+KT

j RKj − γ2NT
j Nj)x̄idτ

+ 2

∫ t+δt

t

(z +Kjx̄i)
TRKj+1x̄idτ

+ 2

∫ t+δt

t

vT (D − S(Xi))
TPjx̄idτ

+ 2γ2

∫ t+δt

t

(ω −Njx̄i)
TNj+1x̄idτ. (3.43)

For a large enough positive integer l and two vectors a ∈ R
na , b ∈ R

nb , we define

Γab = [

∫ t1

t0

a⊗ bdτ,

∫ t2

t1

a⊗ bdτ, · · · ,
∫ tl

tl−1

a⊗ bdτ ]T ,

δx̄ix̄i
= [vecv(x̄i(t1))− vecv(x̄i(t0)), vecv(x̄i(t2))−

vecv(x̄i(t1)), · · · , vecv(x̄i(tl))− vecv(x̄i(tl−1))]
T ,
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where t0 < t1 < · · · < tl are positive integers. (4.12) indicates the following equation.

Ψij



















vecs(Pj)

vec(Kj+1)

vec((D − S(Xi))
TPj)

vec(Nj+1)



















= Φij, (3.44)

where

Ψij = [δx̄ix̄i
,−2Γx̄ix̄i

(In ⊗ (KT
j R)− 2Γx̄iz(In ⊗R),

− 2Γx̄iv,−2γ2(Γx̄iω − Γx̄ix̄i
(In ⊗NT

i ))],

Φij = −Γx̄ix̄i
vec(Q+ (Kj

i )
TRKj

i − γ2NT
i Ni).

Equation (3.44) is uniquely solved by the least squares method if the matrix Ψij is of

full column rank, i.e.,



















vecs(Pj)

vec(Kj+1
i )

vec((D − S(Xi))
TPj)

vec(Nj+1)



















= (ΨT
ijΨij)

−1ΨT
ijΦij. (3.45)

Note that D is computable by (3.45) given S(X0) = 0. If we seek a sequence

α0
2, α

0
3, · · · , α0

h+1 ∈ R and a matrix U0
† ∈ R

m×q such that

S(X1) +
h+1
∑

i=2

α0
iS(Xi) = P−1

j Kj+1RU0
† +D, (3.46)

then (X0
† , U

0
† ) is a solution to the regulator equation (3.7), where X0

† = X1 +
∑h+1

i=2 α0
iXi.

If the solution to (3.7) is not unique, we find all linearly independent vectors vec(







Xk
†

Uk
†






)

by seeking sequences αk
2, α

k
3, · · · , αk

h+1 ∈ R such that for k = 1, 2, · · · , H with H =
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q(m− r)

Xk
† =

h+1
∑

i=2

αk
iXi,

h+1
∑

i=2

αk
i S(Xi) = P−1

j Kj+1RUk
† . (3.47)

Then, we define a set:

S ={(X,U)|X = X0
† +

H
∑

k=1

βkX
k
† , U = U0

† +
H
∑

k=1

βkU
k
† ,

∀β1, β2, · · · , βH ∈ R}. (3.48)

Algorithm 3 RL Algorithm Algorithm for Solving GROORP

1: Select a K0 such that σ(A − B1K0) ∈ C
− and a threshold ǫ > 0. Choose Q = QT ≥

γxIn such that the small-gain condition holds. Compute trails X0, X1, · · · , Xh+1

2: Employ u = −K0x+ ξ as the control input on [t0, tl] with ξ an exploration noise.

3: j ← 0, i← 0

4: repeat

5: Solve Pj, Kj+1, Nj+1 from (3.45).

6: j ← j + 1

7: until |Pj − Pj−1| < ǫ

8: Obtain the approximated optimal control gains K∗ and N∗, and approximated solution

P ∗ to (3.14)

9: repeat

10: Solve S(Xi) from (3.46)

11: i← i+ 1

12: until i = h+ 2

13: Obtain (X∗, U∗) by solving Problem 3.3.1

14: The robust optimal controller u = −Kj(x−X∗v) + U∗v and the optimal disturbance

policy ω = Nj(x−X∗v) are computed.
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Theorem 3.4. Given a stabilizing K0 ∈ R
m×n, if Ψij is in full column rank for i =

0, 1, · · · , h + 1, j ∈ Z+ , the sequences {Pj}∞j=0, {Kj}∞j=1 obtained from solving (3.45)

converge to P ∗ and K∗, respectively.

Proof. Given a stabilizing Kj , if Pj = P T
j is the solution of (4.9), Kj+1 and Nj+1 is de-

termined by Kj+1 = R−1BT
1 Pj and Nj+1 = γ−2BT

2 Pj , respectively. Let Tj = (S(Xi))
TPj .

By (4.12), we know that Pj , Kj+1 and Tj satisfy (3.45). On the other hand, let P = P T ∈

R
n×n, K ∈ R

m×n, N ∈ R
d×n and T ∈ R

q×n, such that

Ψij



















vecs(P )

vec(K)

vec(T )

vec(N)



















= Φj.

Then, we have Pj = P , Kj+1 = K, Nj+1 = N , Tj = T . Moreover, P,K,N, T are

unique when Ψij is in full column rank. By Lemma 3.3.1, the convergence of Pj , Kj and

Nj is proved.

3.6 EXAMPLE

Consider a partially linear system:

ζ̇ = −ζ3 + ζe,

ẋ =







−1 −2

0.5 −2






x+







2

2






(u+ v1ζ

2) +







1

4






ω,

v̇ =







0 −1

1 0






v,

e = x1 + v2.
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In this example, for any v ∈ R
2, ζ(v) = 0 satisfies the Assumption 3.4.1. Taking

Vζ = ζ2/2, the derivative of V along the trajectories of the dynamic uncertainty is given by

V̇ζ =− ζ4 + ζ2e

=− 0.5ζ4 − 0.5ζ4 + ζ2e

≤− 0.5ζ4, ∀|ζ| ≥
√

|e|
0.5

(3.49)

Given the fact that ∆ = ζ2, it is checkable that Assumptions 3.4.2 and 3.4.3 are

satisfied with gain function

γ∆(s) =
s

0.5
.

If γe(s) < 0.5s, the error system (3.30)-(3.31) is guaranteed globally asymptotically

stable at the origin. In this paper, we choose Q = 5I2, γ = 11, the initial stabilizing

feedback control gain matrix as K0 =

[

0 0

]

, the initial disturbance control gain as N0 =
[

0 0

]

, and the convergent criterion as ǫ = 10−8, and for i = 1, 2, 3, matrices Xi as

X1 =







0 −1

0 0






, X2 =







0 0

1 0






, X3 =







0 0

0 1






.

The online data is collected from t = 0s to t = 15s. After that, we iteratively compute

the optimal values and convergence is attained after 6 iterations. Figs. 3.1-3.3 depicts the

errors between Pj and P ∗, between Kj and K∗, and Nj and N∗.

For i = 0, 1, 2, 3, we solve the linear map S(X)i from online information. From

(3.46) and (3.47), we get the set of unique solution of regulator equation, which is also the

optimal solution (X∗, U∗):

X∗ =







0.0000 −1.0000

1.4999 −1.0003






, U∗ =

[

0.9996 −1.5002
]

.
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Then we get the robust optimal controller and optimal disturbance policy

u = −
[

0.8016 1.5239

]

x+

[

3.2853 −3.8262
]

v,

ω =

[

−0.0268 0.0553

]

x+

[

0.0829 −0.0285
]

v, (3.50)

respectively. The learned controller is implemented after t = 15s. Fig. 3.4 depicts that the

output of the plant asymptotically tracks the reference. Figs. 3.5-3.8 depict the trajectories

of the states, the control input, the disturbance and the dynamic uncertainty respectively.

In order to validate the effect of disturbances on the cost, we change the disturbance

input by

ω =
1

2

([

−0.0268 0.0553

]

x+

[

0.0829 −0.0285
]

v

)

. (3.51)

We record the cost

∫ 500

0

[(x̄∗)TQx̄∗ + (ū∗)T ū∗ − γ−2ωTω]dt

for different disturbances until t = 500s. This is reasonable since the cost does not change

significantly after t > 500s for a stabilized system. It is obtained that the cost under

disturbance (3.51) has reduced by 21.7296 compared with the cost under (3.50).

3.7 CONCLUSION

This paper proposes a novel control approach for global optimal output regulation of a

class of partially linear systems with an exosystem and nonlinear dynamic uncertainties. By

using reinforcement learning, a data-driven control strategy is proposed for designing ro-

bust adaptive optimal controllers and an optimal disturbance policy to achieve the rejection

of nonvanishing disturbance, forcing the output to asymptotically track a desired output.

The obtained simulation results ascertain the effectiveness of the proposed approach.
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Figure 3.1: Convergence of Pj to its Optimal Value P ∗ during the Learning Process
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Figure 3.2: Convergence of Kj to its Optimal Value K∗ during the Learning Process
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Figure 3.3: Convergence of Nj to its Optimal Value N∗ during the Learning Process
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Figure 3.5: Trajectories of the States
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Figure 3.6: Trajectory of the Dynamic Uncertainty ζ(t)
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Figure 3.7: Trajectory of Control Input u(t)
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CHAPTER 4

PREDICTIVE CRUISE CONTROL OF CONNECTED AND AUTONOMOUS

VEHICLES

4.1 ABSTRACT

Predictive cruise control concerns designing controllers for autonomous vehicles us-

ing the broadcasted information from the traffic lights such that the idle time around the

intersection can be reduced. This paper proposes a novel adaptive optimal control ap-

proach based on reinforcement learning to solve the predictive cruise control problem of a

platoon of connected and autonomous vehicles. First, the reference velocity is determined

for each autonomous vehicle in the platoon. Second, a data-driven adaptive optimal control

algorithm was developed to approximate the optimal control gains of a desired distributed

controller without the exact knowledge of system dynamics. The obtained controller is able

to regulate the headway, velocity and acceleration of each vehicle in an optimal sense. The

goal of trip time reduction is achieved without compromising vehicle safety and passen-

ger comfort. Numerical simulations are presented to validate the efficacy of the proposed

methodology.

4.2 INTRODUCTION

It is reported by the US Department of Transportation (DOT) that around ten percent

of traffic delays are due to poor traffic signal scheduling (The intelligent transportation

systems for traffic signal control deployment benefits and lessons learned, 2007), which

results unnecessary fuel burning and heavy pollution to the public environment. Recently,

several traffic intersections have been equipped with advanced traffic signal (ATS) control

(X. Sun et al., 2016) to help drivers save fuel and increase the mobility. However, it is note-

worthy that ATS has high a cost of implementation and maintenance, and usually fails to



60

provide the traffic light schedule. To solve the problems regarding traffic delay and pollu-

tion, the traveling vehicles need to have an insight on the timing of traffic lights switching

which the traffic lights broadcast periodically to oncoming vehicles, i.e., let traffic light

speak. This communication method between traffic lights and vehicles is called vehicle-

to-infrastructure (V2I) communication. These vehicles are also allowed to exchange their

information in a wireless manner, which refers to vehicle-to-vehicle (V2V) communica-

tion. Both V2I and V2V communications are crucial technologies in the field of connected

vehicles.

Autonomous vehicle technologies aim at reducing fuel consumption and increasing

traffic safety. By integration of the recent wireless vehicular networking technology in con-

nected vehicles, the connected and autonomous vehicles (CAV) technology (Y. J. Zhang,

Malikopoulos, & Cassandras, 2016; Talebpour & Mahmassani, 2016) is under extensive

investigation, which is expected to prevent secondary crashes, reduce property damage

and injury, congestions and emissions. There are several existing works that contribute

to the development of CAV. For instance, cooperative adaptive cruise controllers (CACC)

have been designed for a longitudinal platoon of CAV (Gao, Jiang, & Ozbay, 2017; Gao,

Rios, Tong, & Chen, 2017; Oncu, Ploeg, van de Wouw, & Nijmeijer, 2014; Desjardins &

Chaib-draa, 2011; Guo & Yue, 2014). The effectiveness of CACC on the safety, traffic

flow, and environment has also been tested in different traffic scenarios with human-driven

and autonomous vehicles (van Arem, van Driel, & Visser, 2006; Shladover, Su, & Lu,

2012). In Gao’s previous work, he implemented an optimal CACC algorithm for buses on

the exclusive bus lane of the Lincoln tunnel corridor (Gao, Jiang, Ozbay, & Gao, 2018).

Micro-traffic simulation results have shown that, using the proposed algorithm, the travel

times of buses on the exclusive bus lane are close to the present day travel times even when

the traffic demand is increased by 30%. Cooperative vehicle intersection control (CVIC)

is another approach of CAV (Lee & Park, 2012). The objective of CVIC is to let vehicles
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automatically run across the intersection without requiring the traffic signals. Simulation

results in (Lee & Park, 2012) demonstrate that CVIC is able to potentially decrease the

traffic pollution and delay. However, to completely remove the traffic lights may not be

easy to realize in the near future.

Recently, the predictive cruise control (PCC) has been gaining a lot of attention. The

main idea is to reduce the idle time of vehicles by using the upcoming traffic signal infor-

mation (Asadi & Vahidi, 2011; Kavurucu & Ensar, 2017; Alrifaee, Jodar, & Abel, 2015).

The PCC can help promote a smooth traffic by decreasing the use of breaks, and increase

the safety by excluding the red-light violation. However, there are two open issues of PCC

in practice:

1) The existing PCC is designed via model-based control method, such as model pre-

dictive control (Alrifaee et al., 2015; Asadi & Vahidi, 2011). It is generally known

that to obtain a system model accurately is hard work. The model-based control

approach may even destabilize the system given an inaccurate model. Due to the sig-

nificant development of information, communication and sensing technologies, the

vehicles’ position, velocity, and acceleration data and the upcoming traffic signal are

available for feedback. In order to address this issue regarding the model uncertainty,

data-driven control approaches can be employed to design PCCs.

2) Existing PCCs are usually studied for an individual vehicle. It will be interesting that

this strategy can be generalized to a platoon of CAVs. There are two major challenges

for this generalization. The first challenge is how to determine the reference velocity

of each vehicle in the platoon such that safety is ensured while the vehicles in the

platoon maintain desirable inter-vehicle distance. The second challenge is related

to the control structure for CAVs. A platoon of CAVs can be considered as a class

of autonomous multi-agent systems. We will design a distributed control strategy

(Fang, Wu, & Yang, 2016), instead of centralized control. This is because traditional
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centralized control design usually relies on the accessibility of all the agents (vehi-

cles). Besides higher use of communication resources, centralized control is fragile

as malfunction of only one agent may threaten the safety and reliability of the whole

platoon.

In this paper, we propose a novel data-driven distributed PCC approach for a pla-

toon of CAV. Our contributions are twofold: First, we propose a novel reference velocity

determination approach based on the number and desired headways of vehicles, and traf-

fic light schedule to reduce idle time for the whole platoon at stop lights. Second, without

relying on the accurate knowledge of system dynamics, reinforcement learning (RL) is em-

ployed to obtain an optimal controller that regulates the headway, velocity and acceleration

of CAV. RL is a practically-sound, data-driven computational approach which is inspired

and adapted from human decision-making processes (Sutton & Barto, 1998; Vamvoudakis,

2014; Fan & Yang, 2016; Wang et al., 2016; Y. Jiang et al., 2017). It is essentially a direct

adaptive optimal control approach that can be employed to learn or approximate the optimal

control policy of the system without a priori knowledge of the system model while main-

taining the system stability. Ozbay developed data-driven optimal controllers for CAVs on

the highway via RL (Gao, Jiang, & Ozbay, 2017; Gao & Jiang, 2016a; Meng et al., 2015).

In this paper, we will move forward to the PCC problem for urban traffic through taking

the upcoming traffic signals into consideration.

The remainder of this paper is organized as follows. In Section 4.3, we formulate the

procedure to obtain reference velocities for CAVs. A data-driven RL algorithm to learn

optimal control gains of the distributed controller will be present in Section 4.4 to ensure

all CAVs track their references. Section 4.5 includes simulation results using a platoon of

four vehicles for illustration. Conclusions are drawn in Section 4.6.
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Figure 4.1: Space-Time graph

4.3 REFERENCE VELOCITY DETERMINATION

In this section, we determine the reference velocity for the vehicular platoon based

on the present cruising velocity, desired headway, vehicle length and information received

from the impending traffic lights. Our interest is to find a maximum allowable velocity

such that the vehicle arrives on green while avoiding waiting on red.

Fig. 4.1, a space-time graph, is depicted to aid the explanation. The instantaneous

distance of the vehicle to the impending traffic light is assumed known. It is denoted

as si where i is the traffic light index depicted in the Fig. 4.1. Periodically, the lights

broadcast the light sequence schedule to upcoming vehicles. rij and gij are the jth red

and green of the ith traffic light. For instance, the information [gi1, ri1, gi2, ri2, gi3, · · · ] =

[30, 70, 100, 130, 160, · · · ] broadcasted to approaching vehicles is interpreted as follows.

The ith light is presently on red which will elapse for 30s, then will be on green for 40s,

then 30s on red and so forth. This time scheduling will be used to determine the reference
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velocity to avoid stopping at red given the knowledge of the positions of vehicles. The

reference velocity should be in [Vmin, Vmax] where Vmin is the local minimum velocity limit

and the Vmax is the allowed local maximum velocity.

The reference velocity for an individual vehicle can be determined via the following

phases:

Phase 1 The velocity of the vehicle should stay in [s1/r1j, s1/g1j] so that it is able to pass at

the first green of the first light.

To avoid the red light depends on if there are intersection between these two intervals,

i.e.,

v∗ ∈ [
s1
r1j

,
s1
g1j

] ∩ [Vmin, Vmax]

where v∗ is the desired velocity. This is a mathematical description of the process

stated above. This helps determine the possibility of passing during the next green.

The process continues by letting j ← j+1 until the expression gives a nontrivial set.

Set j∗ ← j.

To get a better understanding of the scenario, assume the local velocity limits are

Vmin = 10m/s, and Vmax = 25m/s. The distance to the traffic light i = 1 is

s1 = 2000m and the following information is broadcasted

g11 =10s, r11 = 30s, g12 = 50s,

r12 =80s, g13 = 110s, r13 = 140s.

Then, we have [s1/r11, s1/g11] = [67, 200]m/s. Obviously, this does not intersect

with the interval [Vmin, Vmax] = [10, 25]m/s, which means this path is not a good

choice if stopping at red is to be avoided, then we proceed to the next possible path,

i.e., [s1/r12, s1/g12] = [25, 40]m/s which does not intersect with the local velocity

limits. Moving to the third interval [s1/r13, s1/g13] = [14.3, 18]m/s, it is found that
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the intersection set between the third interval and the velocity limit is [10, 18]m/s.

Therefore, the velocity of the vehicle is chosen 10 ≤ v∗ ≤ 18, which allows the

vehicle to pass the first light without having to stop.

Phase 2 The above process is repeated for subsequent traffic lights j∗+1, j∗+2, · · · to obtain

the best possible paths.

Phase 3 The intersection obtained from Phases 1 and 2 ranges from the minimum to the max-

imum possible velocities to reduce the number of stops at red since our objectives is

to reduce trip time. We set the reference velocity to the highest possible velocities

obtained from the intersection of ranges. The main objective of this system is to re-

duce the distance between the driving vehicles to increase traffic flow with minimum

or no disturbances throughout the platoon of vehicles.

Considering that our interest is on a platoon of connected vehicles, the members of the

platoon are connected through the vehicle-following objective. Every member follows its

immediate preceding vehicle while maintaining a desired distance. Time headway spacing

policy will be considered in this work. It can be mathematically represented as follows:

h∗
k = τkv

∗ + dk (4.1)

where h∗
k is the desired headway between the front bumper of a vehicle k and the rear

bumper of the immediate preceding vehicle k − 1. dk is the gap between the vehicles k

and k − 1 at standstill, τk is the headway time constant of vehicle k, and v∗ is the vehicles’

desired velocity.

The above three-phase approach can be generalized to determine the reference veloc-

ity of this platoon with some modifications. Suppose we have n autonomous vehicles with

length of vehicle k being lk, and all the vehicles are operating at their desired velocities. If

the head of the leader passing through a specific position at t = T , then the tail of the last
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vehicle will pass through the same position at t = T +∆t(v∗), where

∆t(v∗) = τ +
d+ l

v∗
, τ =

n
∑

k=2

τk, d =
n

∑

k=2

dk, l =
n

∑

k=1

lk.

In this setting, the desired velocity should satisfy the following inequality to allow the

whole platoon go across the ith intersection and jth green light

v∗ ≥ si
rij −∆t

.

When ∆t < rij , this inequality is equivalent to

v∗ ≥ si + d+ l

rij − τ
.

The velocity interval of the vehicles will be modified by

v∗ ∈ [
si + d+ l

rij − τ
,
si
gij

] ∩ [Vmin, Vmax],

which will be compared with the local velocity. The remaining part will be similar to the

three-phase approach for an individual vehicle.

Remark 4.3.1. Interestingly, for a large platoon, d and l may be large enough such that

τ > rij . Consequently, there is the possibility of insufficient time to allow all the vehicles

to go through during one green light. An alternative method is to split the large platoon in

multiple sub-platoons such that each platoon can be manipulated flexibly.

4.4 DATA-DRIVEN CONTROL ALGORITHM DESIGN VIA RL

In this section, we propose a data-driven adaptive optimal control algorithm for CAV

to track the determined reference velocity. To begin with, we define hk and vk as the

headway and the velocity of the kth vehicle, respectively. Moreover, let ∆hk = hk − h∗
k

and ∆vk = vk−1 − vk. The vehicle dynamics can be represented by

ẋk = Akxk +Bkuk +Dxk−1 (4.2)
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where uk is the control input of vehicle k, the system variables xk = [∆hk,∆vk, ak] are the

headway error, velocity error and acceleration of the vehicle.

System matrices Ak ∈ R
3×3, Bk ∈ R

3×1, D ∈ R
3×3 can be respectively defined as

Ak =













0 1 −τk
0 0 −1

0 0 − 1
Tk













, Bk =













0

0

Gk

Tk













, D =













0 0 0

0 0 1

0 0 0













(4.3)

with Gk and Tk uncertain system parameters.

Remark 4.4.1. It is checkable that the pair (Ak, Bk) is stabilizable and all the eigenvalues

of Ak stay in the closed left-half complex plane.

Given the system (4.2), define a directed graph G = {V , E}. V = {0, 1, 2, · · · , n} is

the node set with the node 0 as the fictitious leader running in a constant velocity v∗, which

implies that x0 = 0. E ⊂ V ×V refers to the edge set. A = [akj] ∈ R
(n+1)×(n+1) called the

adjacency matrix. Denote Nk the set of all the nodes j such that (j, k) ∈ E . The adjacency

matrix has the property such that akj > 0 if (j, k) ∈ E and akj = 0 otherwise.

Our objective is to design a distributed state-feedback controller

uk = −K∗
kλk (4.4)

where, for k = 1, 2, · · · , n, if Nk 6= φ, we let

λk =
∑

j∈Nk

akj(xk − xj). (4.5)

Otherwise, we simply set λk = xk. The control gain K∗
k is defined as

K∗
k = R−1

k BT
k P

∗
k (4.6)

where P ∗
k is solved from the following algebraic Riccati equation (ARE)

AT
kPk + PkAk +Qk − PkBkR

−1
k BT

k PK =0. (4.7)
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From optimal control theory, K∗
k is an optimal control gain with respect to the follow-

ing cost function

J =

∫ ∞

0

(xT
kQkxk + uT

kRkuk)dτ (4.8)

and the system (4.2) in the absence of xk−1, where Qk = QT
k ≥ 0, Rk = RT

k > 0 with

(Ak,
√
Qk) observable.

If both Ak and Bk are accurately known, one can employ the classical linear optimal

theory to seek the optimal control gain by solving the ARE (4.7).

Notice that the ARE is a nonlinear equation, solving it is computationally expen-

sive, especially for a large scale system. A numerical algorithm is proposed by Kleinman

(Kleinman, 1968) to approximate the solution P ∗. The algorithm starts from a stabilizing

Kk0. For each l ∈ Z+, we solve for the positive-definite matrix Pkl = P T
kl that satisfies the

Lyapunov equation.

(Ak − BkKkl)
TPkl + Pkl(Ak − BkKkl)

+Qk +KT
klRkKkl = 0. (4.9)

Then, we update Kk,l+1 by

Kk,l+1 = R−1
k BT

k Pkl. (4.10)

Kleiman proved that lim
l→∞

Pkl = P ∗
k and lim

l→∞
Kkl = K∗

k

Rewrite the state equation (4.2) as

ẋk = (Ak − BkKkl)xk +Bk(Kklxk + uk) +Dxk−1. (4.11)
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Then, by the Lyapunov equation (4.9), we have

xT
k (t+ δt)Pklxk(t+ δt)− xT

k (t)Pklxk(t)

=

∫ t+δt

t

xT
k [(Ak − BkKkl)

TPkl + Pkl(Ak − BkKkl)]xkdτ

+ 2

∫ t+δt

t

(uk +Kklxk)
TBT

k Pklxkdτ

+ 2

∫ t+δt

t

xT
k−1D

TPklxkdτ

=−
∫ t+δt

t

xT
k (Qk +KT

klRkKkl)xkdτ

+ 2

∫ t+δt

t

(uk +Kklxk)
TRkKk,l+1xkdτ

+ 2

∫ t+δt

t

xT
k−1D

TPklxkdτ. (4.12)

Employing the idea of Kronecker product, the components in equation (4.12) can be

simplified as

xT
k (Qk +KT

klRkKkl)xk =(xT
k ⊗ xT

k )vec(Qk +KT
klRkKkl),

(uk +Kklxk)
TRkKk,l+1xk =[(xT

k ⊗ xT
k )(I ⊗KT

klRk)

+(xT
k ⊗ uT

k )(I ⊗Rk)]vec(Kk,l+1),

xT
k−1D

TPklxk =(xT
k ⊗ xT

k−1)(I ⊗DT )vec(Pkl).
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For a large integer s > 0, define

αk =[vecv(xk(t1))− vecv(xk(t0)), vecv(xk(t2))

− vecv(xk(t1)), · · · , vecv(xk(ts))− vecv(xk(ts−1))]
T ,

fk =[

∫ t1

t0

xk ⊗ xkdτ,

∫ t2

t1

xk ⊗ xkdτ, · · · ,
∫ ts

ts−1

xk ⊗ xkdτ ]
T ,

gk =[

∫ t1

t0

xk ⊗ ukdτ,

∫ t2

t1

xk ⊗ ukdτ, · · · ,
∫ ts

ts−1

xk ⊗ ukdτ ]
T ,

hk =[

∫ t1

t0

xk ⊗ xk−1dτ,

∫ t2

t1

xk ⊗ xk−1dτ, · · · ,
∫ ts

ts−1

xk ⊗ xk−1dτ ]
T

where 0 ≤ t0 < t1 < · · · < ts.

Equation (4.12) implies the following linear equation

βkl







vec(Pk)

vec(Kk+1)






= γkl, (4.13)

where

βkl = [αk − 2hk(I ⊗DT ),−2fk(I ⊗KT
klRk)− 2gk(I ⊗Rk)],

γkl = −fkvec(Qk +KT
klRkKkl).

We can directly solve equation (4.13) if βkl has full column rank







vecs(Pkl)

vec(Kk,l+1)






= (βT

klβkl)
−1βT

klγkl. (4.14)

Remark 4.4.2. It is shown in reference (Gao, Jiang, Lewis, & Wang, 2017) that, under

some mild conditions of persistent excitation, given a stabilizing control gain Kkl, one

can uniquely find Pkl and the improved control gain Kk,l+1 through collected online data

xk(t), xk−1(t) and uk(t). This process does not rely on the knowledge of system matrices

Ak and Bk.
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Algorithm 4 RL Algorithm

1: k ← 1

2: repeat

3: Apply an initial control policy uk = −Kk0x + θk with exploration noise θk and

Ak − BkKk0 a Hurwitz matrix

4: l ← 0

5: repeat

6: Solve Pkl and Kk,l+1 from (4.14) via online input-state data.

7: l ← l + 1

8: until ‖Pkl − Pk,l−1‖ < ǫk with ǫk a small positive constant.

9: l∗ ← l

10: Obtain the following suboptimal controller

ul = −Kk,l∗λk (4.15)

11: k ← k + 1

12: until k = n+ 1

Remark 4.4.3. Like other ADP methods (Gao & Jiang, 2016a; Lewis & Vamvoudakis,

2011; Gao & Jiang, 2017), the exploration noise θk is introduced to excite the system

such that the matrix βkl has full column rank. Example of the exploration noise includes

sinusoidal signals, and random noise.

Theorem 4.1. The sequences {Pkl}∞l=0 and {Kkl}∞l=1 computed by Algorithm 4 converge to

P ∗
k and K∗

k .

Proof. Let Pkl = (Pkl)
T > 0 be the unique solution to (4.9). Kk,l+1 is uniquely determined

by Kk,l+1 = R−1
k BT

k Pkl. On the other hand, letting P̂ and K̂ solve (4.13), then Pkl = P̂ ,

Kk,l+1 = K̂ are uniquely determined based on elegant choice of exploration noise. By
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Kleiman’s method, we have lim
l→∞

Kkl = K∗
k , lim

k→∞
Pl = P ∗

k . The convergence of sequences

{Pkl}∞l=0 and {Kkl}∞l=1 obtained by RL Algorithm 4 is thus technically guaranteed.

The data-driving learning Algorithm 4 requires no prior knowledge of state matrices.

Also, the convergence to the ideal optimal control gain obtained from the linear quadratic

regulator (LQR) gives the implementation of this algorithm a high confidence level. Be-

sides the convergence of the algorithm, the stability of the closed-loop system is another

important component that need to be analyzed given the fact that the safety of vehicles is

usually related with the system stability.

Theorem 4.2. The CAV system (4.2) in closed-loop with the distributed controller (4.15)

learned by data-driven control Algorithm 4 is asymptotically stable.

Proof. The closed-loop system (4.2) with (4.15) can be written in a compact form

ẋ = ALx (4.16)

where the state x = [xT
1 , x

T
2 , · · · , xT

n ]
T . It is checkable that AL is a block lower-triangular

matrix with Hurwitz sub-matrices on the diagonal. This implies that AL is a Hurwitz ma-

trix. One can immediately see that the closed-loop system is exponentially stable.

Recall that the cost function was defined in (4.8), Let the matrices Q and R be

Q = blockdiag(Q1, Q2, · · · , Qn),

R = blockdiag(R1, R2, · · · , Rn).

By linear optimal control theory, the optimal controller is u = −K∗x such that the

cost function is minimized J∗ = xTP ∗x, where

K∗ =blockdiag(K∗
1 , K

∗
2 , · · · , K∗

n),

P ∗ =blockdiag(P ∗
1 , P

∗
2 , · · · , P ∗

n).
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On the other side, there exists a bounded, positive definite matrix Pb such that the

cost of the closed-loop system is Jc = xTPbx. By selecting µ as the largest eigenvalue

of matrix P ∗P−1
b , we have Jc ≤ µ−1J∗. As a result, the learned controller (4.15) is a

suboptimal controller.

4.5 SIMULATION RESULTS

This section presents the result of simulation carried out to validate the effectiveness

of the proposed algorithm. In this example, we consider a platoon of 4 autonomous vehi-

cles with different dynamics. The communication topology of the vehicles is depicted in

Fig. 4.2. The system parameters of vehicles are illustrated in Tab. 4.1. The initial position,

velocity, and acceleration of vehicles are shown in Tab. 4.2. The allowed maximum and

minimum velocity are Vmax = 30m/s and Vmin = 0m/s. There are four traffic intersec-

tion located at 11000m, 12000m, 13000m and 14000m, respectively. The specific timing

information can be referred to Fig. 4.8.

We first determine the reference velocity for vehicles given the upcoming traffic light

information based on the three-phase approach proposed in section 4.3. The reference

velocity at each intersection is calculated as 30m/s, 19.35m/s, 22.22m/s and 11.76m/s,

respectively.

Then, the online input and state data are collected from t = 0s to t = 6s. In the

simulation, for k = 1, 2, 3, 4, Rk = 1 and Qk = diag([0.01, 0.01, 0.01]) are chosen as the

weights in the performance index (4.8). The Algorithm 4 is implemented to approximate

the optimal distributed control gain K∗
k . Figs. 4.3-4.6 depict the convergence of optimal

values during the learning process. The convergence criterion is selected by ǫk = 10−10 for

k = 1, 2, 3, 4. It is checkable that the convergence criterion is satisfied for all of vehicles

with less than 10 iterations. We update by the learned near-optimal distributed control gains

after t = 6s. The trajectories of vehicles using the designed PCC strategy are depicted in
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Figure 4.2: Communication Topology of Vehicles

Fig. 4.8 and its zoom-out Fig. 4.9. The velocities of vehicles are depicted in Fig. 4.7.

It can be observed that, without accurate knowledge of system parameters, the designed

controller is able to track the desired trajectory timely and reliably, which attests to the

safety of the designed control policy. Moreover, by proper determination on reference

velocity and design of data-driven controllers, one can see that the vehicles are able to

go across the traffic intersection without unnecessary stopping which increases the traffic

mobility.

4.6 CONCLUSIONS

This paper has studied the predictive cruise control problem for a platoon of connected

and autonomous vehicles. Theoretical steps are proposed for planning of the reference

velocity of the vehicles in the platoon. The reinforcement learning strategy is employed

to develop a distributed optimal state-feedback controller. Simulation results show that

the obtained controller is able to regulate the headway, velocity and acceleration of each

vehicle to follow the desired paths while reducing the trip time of each vehicles.
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Table 4.1: System Parameters

Parameter Value Parameter Value Parameter Value

τ1 1.5 GL1 2.0 TL1 0.20

τ2 1.5 GL2 2.2 TL2 0.24

τ3 1.5 GL3 2.4 TL3 0.29

τ4 1.5 GL4 2.6 TL4 0.34

d1 3 l1 2.5

d2 3 l2 3

d3 3 l3 3

d4 3 l4 3.5

Table 4.2: Initial Values of Vehicles

Vehicle # Position [m] Velocity [m/s] Acceleration [m/s2]

#1 10000 29 0

#2 9900 27 0

#3 9700 29 0

#4 9400 32 0
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Figure 4.3: Convergence of the Optimal Value of Vehicle #1 during the Learning Process

0 2 4 6 8 10

Number of Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.4: Convergence of the Optimal Value of Vehicle #2 during the Learning Process



77

0 2 4 6 8 10

Number of Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 4.5: Convergence of the Optimal Value of Vehicle #3 during the Learning Process
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Figure 4.6: Convergence of the Optimal Value of Vehicle #4 during the Learning Process
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CHAPTER 5

CONCLUSIONS

We have developed RL methods for H∞ output regulation problems for uncertain

linear systems and uncertain partially linear systems. A novel data-driven adaptive opti-

mal control approach was developed for solving the game output regulation problem of a

continuous-time system. The obtained controller is able to asymptotically track a reference

while both the modeled and unmodeled disturbances were rejected. The important feature

of this computational mechanism is that it does not rely on any priori knowledge of the

systems dynamics.

The RL methods were also developed for the predictive cruise control of connected

and autonomous vehicles to design a controller which was able to regulate the headway,

speed and the acceleration of the vehicles to their desired values.
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