1,692 research outputs found

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Dimensions of cooperative spectrum sharing: Rights and enforcement

    Get PDF
    Sharing of radio spectrum requires a careful and nuanced understanding of the rights of incumbents and spectrum entrants. In addition, the dynamics of stakeholders can be understood by examining how various rights are arranged (and rearranged) among them. Importantly, understanding the rights and their distribution is the predicate to developing rational and useful enforcement approaches. In this paper, we show that spectrum sharing involves a rearrangement of the rights associated with radio spectrum among stakeholders. We show how this rearrangement of rights implies the definition of new bundles of rights, appropriate to each particular sharing scenario. We discover these rights - and their (re)arrangement - by examining several cases of spectrum use. We begin with the rights associated with exclusive use and proceed to consider rights arrangement in commons and different spectrum sharing configurations. Further, in the case of commons, we explicitly examine how governance of commons can affect the rights distribution in spectrum. In each case, the bundles of rights associated with each stakeholder changes. New bundles of rights have consequences, not only on the behavior of spectrum users but also on the enforcement process. Our examination of the bundles of rights shows that each rearrangement results in different approaches to enforcement. We demonstrate this by revisiting enforcement in the cases we examine. © 2014 IEEE

    A Hierarchical Spectrum Access Scheme for TV White Space Coexistence in Hetergeneous Networks

    Get PDF
    Among current techniques for dynamic access to television (TV) white space (TVWS), geolocation database-based access provides a promising performance in protecting the TV-band incumbents from interference that cannot be efficiently achieved in other license-exempt models. However, in heterogeneous wireless networks, most portable devices do not have such access and may cause interference to TV incumbents. We propose a hierarchical model for spectrum sharing in TVWS that includes a wide range of fixed and portable devices. In the first tier, the TV broadcaster can lease the spectrum bands to local fixed users based on a soft license agreement. The fixed users are allowed to share access to this spectrum with some mobile users in their proximity in exchange for cooperative relaying. We consider a practical scenario, where only partial channel state information (CSI) is available at the users\u27 transmitters, and we propose a robust algorithm against such uncertainties in CSI values. We also propose a reputation-based relay selection mechanism to identify selfish portable users. The proposed spectrum sharing framework can provide a practical model for TVWS-coexistence that prevents undesired interference to the incumbents while restricting interference among the unlicensed devices. The simulation results show the enhancement of fixed users\u27 rate compared with alternative relay selection methods

    Investment and Pricing with Spectrum Uncertainty: A Cognitive Operator's Perspective

    Full text link
    This paper studies the optimal investment and pricing decisions of a cognitive mobile virtual network operator (C-MVNO) under spectrum supply uncertainty. Compared with a traditional MVNO who often leases spectrum via long-term contracts, a C-MVNO can acquire spectrum dynamically in short-term by both sensing the empty "spectrum holes" of licensed bands and dynamically leasing from the spectrum owner. As a result, a C-MVNO can make flexible investment and pricing decisions to match the current demands of the secondary unlicensed users. Compared to dynamic spectrum leasing, spectrum sensing is typically cheaper, but the obtained useful spectrum amount is random due to primary licensed users' stochastic traffic. The C-MVNO needs to determine the optimal amounts of spectrum sensing and leasing by evaluating the trade off between cost and uncertainty. The C-MVNO also needs to determine the optimal price to sell the spectrum to the secondary unlicensed users, taking into account wireless heterogeneity of users such as different maximum transmission power levels and channel gains. We model and analyze the interactions between the C-MVNO and secondary unlicensed users as a Stackelberg game. We show several interesting properties of the network equilibrium, including threshold structures of the optimal investment and pricing decisions, the independence of the optimal price on users' wireless characteristics, and guaranteed fair and predictable QoS among users. We prove that these properties hold for general SNR regime and general continuous distributions of sensing uncertainty. We show that spectrum sensing can significantly improve the C-MVNO's expected profit and users' payoffs.Comment: A shorter version appears in IEEE INFOCOM 2010. This version has been submitted to IEEE Transactions on Mobile Computin

    Market Mechanisms Towards Secondary Spectrum Usage

    Get PDF
    Widespread adoption of smartphones, tablets and other smart devices has resulted in mobile operators (MOs) making a transition from voice to data centric business model. As a consequence there has been an increase in demand for radio spectrum. Spectrum availability in the future can be a cause of concern, the main reason of which is being attributed to the traditional and inflexible approach towards spectrum management. Hence it is required to overhaul the existing spectrum management techniques and adopt those models which aim at higher spectrum utilization. As part of our research methodology we first perform a state-of-the-art review on secondary usage of radio spectrum. We observe that most research assumes a clean slate approach towards the emergence of secondary spectrum markets which are typically designed with an underlying assumption of participating actors being of homogeneous type. In contrast with above we take an evolutionary approach while designing market mechanisms towards heterogeneous secondary usage of spectrum. The evolution of trading markets is reflected in the incremental steps used in our research, i.e. starting from Wireless Fidelity (Wi-Fi IEEE 802.11) capacity markets, followed by super Wi-Fi (IEEE 802.11af) capacity markets and finally TV White Spaces (TVWS) spectrum leasing markets. We make use of Value Network Configuration (VNC) methodology for illustrating the design of market mechanism and further evaluate the designed mechanism using Agent Based Modeling (ABM). Based on our simulation results we observe that a generic trade-off exist between the length of lease time, trade facilitation cost and the extent of trading activity within the markets. We also observe that there exists an optimal range of lease time for which all the market players find themselves in economically favourable situation. We compare super Wi-Fi capacity markets and TVWS spectrum leasing markets over performance of MOs and TV broadcasters and according to our evaluation local area strategy seems to offer more benefits for TVWS spectrum usage

    A Survey on Dynamic Spectrum Sharing Using Game Theory in Cognitive Radio Networks

    Get PDF
    Due to the tremendous increase in wireless data traffic, a usable radio spectrum is quickly being depleted. Current Fixed Spectrum Allocation (FSA) strategy give rise to the problem of spectrum scarcity and underutilization. Cognitive Radio (CR) is proposed as a new wireless paradigm to overcome the spectrum underutilization problem. CR is a promising technology which for future wireless communications. CRs can change its operating parameters intelligently in real time to account for dynamic changes in a wireless environment. CR enables a technique called Dynamic Spectrum Allocation (DSA) where the users are able to access unlicensed bands opportunistically. Since idle spectrum from PU is a valuable commodity, many cognitive users will be competing for it simultaneously. Therefore, there arises competition among the users. Users may be only concerned about maximizing their own benefits by behaving rationally and selfishly. Thus spectrum allocation problem falls under NP-hard complex based on its complexity to solve. Out of several solution approaches, Game theory is found to be an efficient mathematical tool since it deals with solving the conflicts among the users. This survey is aimed at providing a comprehensive overview on dynamic spectrum allocation using game theory
    • …
    corecore