A Hierarchical Spectrum Access Scheme for TV White Space Coexistence in Hetergeneous Networks

Abstract

Among current techniques for dynamic access to television (TV) white space (TVWS), geolocation database-based access provides a promising performance in protecting the TV-band incumbents from interference that cannot be efficiently achieved in other license-exempt models. However, in heterogeneous wireless networks, most portable devices do not have such access and may cause interference to TV incumbents. We propose a hierarchical model for spectrum sharing in TVWS that includes a wide range of fixed and portable devices. In the first tier, the TV broadcaster can lease the spectrum bands to local fixed users based on a soft license agreement. The fixed users are allowed to share access to this spectrum with some mobile users in their proximity in exchange for cooperative relaying. We consider a practical scenario, where only partial channel state information (CSI) is available at the users\u27 transmitters, and we propose a robust algorithm against such uncertainties in CSI values. We also propose a reputation-based relay selection mechanism to identify selfish portable users. The proposed spectrum sharing framework can provide a practical model for TVWS-coexistence that prevents undesired interference to the incumbents while restricting interference among the unlicensed devices. The simulation results show the enhancement of fixed users\u27 rate compared with alternative relay selection methods

    Similar works