6 research outputs found

    Energy Efficient Cross-Layer Transmission Model for Mobile Wireless Sensor Networks

    Get PDF

    A Self-Learning MAC Protocol for Energy Harvesting and Spectrum Access in Cognitive Radio Sensor Networks

    Get PDF
    The fusion of Wireless Sensor Networks (WSNs) and Cognitive Radio Networks (CRNs) into Cognitive Radio Sensor Networks (CRSNs) is quite an attractive proposal, because it allows a distributed set of low-powered sensor nodes to opportunistically access spectrum bands that are underutilized by their licensed owners (called primary users (PUs)). In addition, when the PUs are actively transmitting in their own bands, sensor nodes can switch to energy harvesting mode to obtain their energy needs (for free), to achieve almost perpetual life. In this work, we present a novel and fully distributed MAC protocol, called S-LEARN, that allows sensor nodes in a CRSN to entwine their RF energy harvesting and data transmission activities, while intelligently addressing the issue of disproportionate difference between the high power necessary for the node to transmit data packets and the small amount of power it can harvest wirelessly from the environment. The presented MAC protocol can improve both the network throughput and total harvested energy, while being robust to changes in the network configuration. Moreover, S-LEARN can keep the cost of the system low, and it avoids the pitfalls from which centralized systems suffer

    Cooperative Spectrum Sensing and Localization in Cognitive Radio Systems Using Compressed Sensing

    No full text
    We propose to fuse two main enabling features in cognitive radio systems (CRS): spectrum sensing and location awareness in a single compressed sensing based formalism. In this way, we exploit sparse characteristics of primary units to be detected, both in terms of spectrum used and location occupied. The compressed sensing approach also allows to overcome hardware limitations, in terms of the incapacity to acquire measurements and signals at the Nyquist rate when the spectrum to be scanned is large. Simulation results for realistic network topologies and different compressed sensing reconstruction algorithms testify to the performance and the feasibility of the proposed technique to enable in a single formalism the two main features of cognitive sensor networks

    Study of the cyclostationarity properties of various signals of opportunity

    Get PDF
    Global Navigation Satellite Systems (GNSS) offer precise position estimation and navigation services outdoor but they are rarely accessible in strong multipath environments, such as indoor environments. Fortunately, several Signals of Opportunity (SoO), (such as RFID, Wi-Fi, Bluetooth, digital TV signals, etc.) are readily available in these environments, creating an opportunity for seamless positioning. Performance evolution of positioning can be achieved through contextual exploitation of SoO. The detection and identification of available SoO signals or of the signals which are most relevant to localization and the signal selection in an optimum way, according to designer defined optimality criteria, are important stages to enter such contextual awareness domain. Man-made modulated signals have certain properties which vary periodically in time and this time-varying periodical characteristics trigger what is known as cyclostationarity. Cyclostationarity analysis can be used, among others, as a tool for signal detection. Detected signals through cyclostationary features can be exploited as SoO. The main purpose of this thesis is to study and analyze the cyclostationarity properties of various SoO. An additional goal is to investigate whether such cyclostationarity properties can be used to detect, identify and distinguish the signals which are present in a certain frequency band. The thesis is divided into two parts. In the literature review part, the physical layer study of several signals is given, by emphasizing the potential of SoO in positioning. In the implementation part, the possibility of signals detection through cyclostationary features is investigated through MATLAB simulations. Cyclostationary properties obtained through FFT accumulation Method (FAM) and statistical performance of detection are studied in the presence of stationary additive white Gaussian noise (AWGN). Besides that, the performance in signal detection using cyclostationary-based detector is also compared to the performance with the energy-based detectors, used as benchmarks. The simulated result suggest that cyclostationary features can certainly detect the presence of signals in noise, but simple cases, such as one type of signal only and AWGN noise, are better addressed via traditional energy-based detection. However, cyclostationary features can exhibit advantages in other types of noises and in the presence of signal mixtures which in fact may fulfil one of the preliminary requirements of cognitive positioning
    corecore