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The fusion of Wireless Sensor Networks (WSNs) and Cognitive Radio Networks (CRNs) into Cognitive Radio Sensor Networks
(CRSNs) is quite an attractive proposal, because it allows a distributed set of low-powered sensor nodes to opportunistically access
spectrum bands that are underutilized by their licensed owners (called primary users (PUs)). In addition, when the PUs are actively
transmitting in their own bands, sensor nodes can switch to energy harvesting mode to obtain their energy needs (for free), to
achieve almost perpetual life. In this work, we present a novel and fully distributed MAC protocol, called S-LEARN, that allows
sensor nodes in a CRSN to entwine their RF energy harvesting and data transmission activities, while intelligently addressing the
issue of disproportionate difference between the high power necessary for the node to transmit data packets and the small amount
of power it can harvest wirelessly from the environment. The presented MAC protocol can improve both the network throughput
and total harvested energy, while being robust to changes in the network configuration. Moreover, S-LEARN can keep the cost of
the system low, and it avoids the pitfalls from which centralized systems suffer.

1. Introduction

Wireless Sensor Networks (WSNs) aremade up of a big num-
ber of distributed sensor nodes, fitted with various sensors
and typically spread over a wide geographical area [1]. Such
WSNs have found a wide range of applications nowadays,
including periodic monitoring, security, surveillance, and
health monitoring and control [2]. Energy consumption is
a major issue in the design of WSN protocols, since each
WSN node is equipped with limited power supply, due to
cost considerations. Such limited power supply dramatically
reduces the life time of a WSN system, especially whenWSN
nodes keep operating in the active mode.

To prolong the life of WSN nodes, and to avoid the need
for continuous replacement or recharging of the batteries in
such nodes, many researchers focused on developing more
energy efficient MAC and routing protocols for WSNs. Such
protocols utilized different innovative techniques and struc-
tures that minimize the energy consumption per transmitted
packet [3–10].

However, no matter how energy efficient a WSN node
is in transmitting data, a finite power supply is bound to
dry up eventually, especially when high throughput data
transmission is required, which makes the energy problem
in WSN systems one of significant importance. This is why
research in wireless energy harvesting techniques has surged
recently [11–14].

In wireless energy harvesting, the WSN nodes are
equipped with hardware to convert the ambient radio fre-
quency (RF) signals from nearby sources into electricity
to recharge the node’s battery. WSNs represent an ideal
application for energy harvesting since it means the WSN
nodes can rely on a very small rechargeable battery, so long as
they take the appropriate steps to harvest energy to maintain
a sustainable power supply. Since stray RF power is widely
available nowadays with the almost ubiquitous use of TV and
radio broadcasting towers, cellular base stations, and Wi-Fi
access points around the globe, finding a source from which
to harvest power is easier than ever [11–14]. Dedicated RF
sources can also be used in special cases when needed [15].
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ManyWSN nodes rely on license-free spectrum bands to
transmit their data. This can cause heavy interference due to
other networks operating in the same frequency spectrum.
Hence, a promising advancement toWSNs is the proposition
of combiningWSNs with Cognitive Radio Networks (CRNs).
This avoids the aforementioned spectrum access limitation
and also provides the extra benefit of energy harvesting to
WSN nodes [16–18].

CRNs were envisaged to solve the problem of spectrum
inefficiency, which results because large portions of the
licensed spectrum are actually underutilized at specific times
and specific geographical areas [19]. In cognitive radio,
secondary users (SUs) are allowed to opportunistically access
the spectrum bands underutilized by the spectrum owners
[20, 21], but on the condition that this is done in such a way
to avoid harmful interference to the primary users (PUs),
which are the original license holders. The combination of
WSNs and CRNs into Cognitive Radio Sensor Networks
(CRSNs) is quite an attractive proposal, because when the
spectrum bands of a PU are not being utilized, CRSN nodes
can transmit their data over such high-bandwidth bands.
Conversely, when the PU starts utilizing such spectrum,
CRSN nodes can switch to energy harvesting mode to obtain
their energy needs (for free) from the PU itself [17, 18].

In this paper, we introduce a novel MAC protocol for
sensor nodes in a CRSN allowing such nodes to schedule RF
energy harvesting from the PUs in the system, while at the
same time intelligently interweaving their data transmissions
inside the spectrum holes of such PUs.

Aswill be explained shortly, the amount of energy aCRSN
node is able to harvest from a PU is quite small compared
to the energy required by the same CRSN node to transmit
its data packets. This is the status quo in state-of-the-art
hardware and is expected to last for quite some time unless
an unexpected breakthrough occurs in hardware.This means
that a single CRSN node will have to spend much more
time harvesting energy than transmitting data. Our proposed
MAC protocol turns this limitation into an opportunity to
improve the overall throughput of the CRSN network, to
adapt to variations in the network, and to minimize the
packet transmission delay at each sensor node. This is done
by utilizing a progressive self-learning process at each CRSN
node to schedule energy harvesting and data transmission. To
the best of our knowledge, no other researchers considered
the discrepancy between the amount of energy harvested by
sensor nodes and that required to transmit data, nor did they
try to utilize this problem to the benefit of the system. Our
MAC protocol is named S-LEARN (Self-Learning Energy
harvesting and spectrum Access in cognitive Radio sensor
Networks) and is based on a fully distributed architecture,
which helps in reducing the cost of administration and
maintenance. It also avoids the problem of single point-of-
failure from which centralized systems suffer.

This rest of this work is organized as follows: In Section 2
we provide the necessary background for CRSN networks
and energy harvesting. In Section 3we describe our proposed
MAC protocol for sharing the spectrum while harvesting
energy in CRSN systems. Simulation details and the per-
formance evaluation results illustrating the benefits of our

proposed algorithm are explained in Sections 4 and 5, respec-
tively. More discussion of the tradeoffs achieved by varying
the control parameters of our suggested method is given in
Section 6. Finally, Section 7 concludes our discussion.

2. Background and Related Work

There has been tremendous research regarding the hardware
circuit design for energy harvesting devices. Most of the
implementations are based on the CMOS technology, though
other technologies have also been used on occasion. In a har-
vesting device, generally the efficiency of energy conversion
from the AC input radio signal to the output DC voltage is
modest unless the received RF power level is high enough
(above −15 dBm). For example, the work in [22] can achieve
about 70% efficiency at 0 dBm received RF power on the
2.45GHz spectrum, and the design in [23] can achieve 75%
efficiency at −10 dBm received power at 900MHz. However,
the efficiency drops to 40%when the power drops to−17 dBm
for the state-of-the-art work in [24] at 868MHz. This means
that the amount of harvested energy is typically small, even
with the best possible hardware, especially due to the large
propagation loss in wireless environments. For example, the
authors in [24] managed to harvest 2 𝜇W at a distance of 27
meters away from a 1.78W transmitter running at 868MHz.
Another study managed to obtain a harvested energy of
5.5 𝜇Wat 15meters from a 4Wpower supply running at 902–
928MHz [25]. In addition, the authors in [26] managed to
harvest 60 𝜇W at 4.1 km from a high-powered 960 kW TV
tower broadcasting in the 674–680MHz frequency range.

It is fair to expect that more advanced technologies
for wireless energy harvesting will be available in the near
future due to better multiband electronics and better design
of highly efficient beam-forming antenna arrays [27–29].
However, comparing the levels of power that current state-of-
the-art harvesters can achieve (which is in microwatts), with
the power required for transmitting data packets (which is in
milliwatts), we see a big discrepancy. For example, a typical
WSN node transmitter running at 2.4GHz might send at a
power level of −4.4 dBm, at which time its electronics will
consume an average power of 4.5mW [30]. If the transmit
power is increased to 0 dBm, the transceiver of a sensor node
consumes approximately 87mW [30]. Another state-of-the-
art ultra low power 915MHz transmitter sending at −3 dBm
requires a total power of 1.78mW [31].

This effectively means that sensor nodes relying on RF
energy harvesting to achieve perpetual lifetime are limited
in their data transmission capabilities because they need to
spend a great amount of time harvesting enough energy to
be able to transmit a single packet. This is a big problem
for WSNs that rely on energy harvesting, but one that we
turn into an opportunity as we design our MAC protocol
seamlessly around this issue, without sacrificing robustness
and simplicity andwithout abandoning the distributed nature
of WSN networks.

It is noteworthy that many of the scheduling techniques
and MAC protocols proposed for WSNs that employ energy
harvesting have utilized a centralized approach. For example,
the authors in [32] proposed a scheduling protocol that



Journal of Sensors 3

requires sensor nodes to harvest energy from downlink
broadcast signals before they use this harvested energy to
transmit their independent uplink data packets based on a
Time Division Multiple Access (TDMA) framework coordi-
nated by the access point. The access point jointly optimizes
the time allocations for the downlink energy harvesting and
uplink data transfer, which results in maximizing the overall
system throughput.

A similar TDMA-based system was studied in [33] but
with the base station equipped with two antennas. The
optimization problem maximizes the total throughput of the
system subject to time constraints or minimizes the total
harvesting time and data transmission time of the system
subject to data rate constraints.

The MAC protocol featured in [34] uses a contention-
based approach based on CSMA/CA for a star-topology sen-
sor network. In this topology, a single controller node collects
data from and emits wireless energy to other sensor nodes.
The presented protocol uses an energy adaptive technique
and out-of-band RF power harvesting to manage the sensor
node’s duty cycle based on the node remaining energy level
and to control the node’s backoff time based on the node
energy harvesting rate.

The authors in [35] considered a Multiple-Input and
Multiple-Output (MIMO) system with imperfect channel
state information and proposed a protocol for frame-based
transmission that splits each frame into three phases. In
the first phase, the centralized base station estimates the
downlink channels by utilizing pilots. The base station then
broadcasts radio energy to all nodes under its control for
them to perform harvesting in the second phase. In the third
and final phase, nodes transmit their data packets to the base
station. The optimization problem is executed at the base
station to optimize the time and energy allocation with the
aim to maximize the minimum rate among all nodes.

The work in [36] used a multiantenna base station in
an OFDMA broadband setting to not only communicate
but also transfer RF energy to the wireless nodes. The
base station optimization algorithm maximizes the system
throughput under the constraint of power consumption by
the base station and the wireless nodes. The authors in [37]
allowed the base station to optimize energy efficiency (i.e.,
bit/Joule) in the downlink of amultireceiverOFDMA system.
The optimization problem is based on the transmit power
allocation from the base station and receiver operation to
harvest energy.

Though these are valid optimization schemes, they rely
on a centralized and powerful controller. This is not a perfect
fit for WSNs since it suffers from intractable computational
complexity when the system size grows. In addition, it
exhibits single point-of-failure issues.

Decentralized approaches that are based on game theory
have also been suggested to reduce the complexity issue
when working out the optimal solution. For example, the
authors in [38] proposed a bidding strategy to achieve a Nash
equilibrium between the nodes when competing to harvest
RF energy. The work in [39] extended the bidding to both
data transmission and energy resources. In [40] a repeated
coalition formation gamewas considered, where RF-powered

wireless nodes cooperate in packet transmission to improve
the long-term payoff for the system. Such techniques suffer
from overhead and the need for out-of-band mechanisms
to perform bidding. Additionally, the power-limited and
energy-constrained WSN nodes are not typically capable of
running such sophisticated algorithms.

Other game-theoretic approaches used for optimizing
energy harvesting in sensor networks include queuing theo-
retic transmission policies [41] and modified back-pressure-
based algorithms with energy queues [42].

In [15], the authors proposed a distributedMAC protocol
based on CSMA/CA to optimize in-band RF energy harvest-
ing frommultiplewireless energy sources in aCRSN.Thegoal
was to minimize the impact of interference between the mul-
tiplewireless sources and tomaximize energy transfer, but the
authors did not consider the issue of either minimizing the
interference between the secondary nodes and the primary
users or minimizing the collisions between the secondary
nodes themselves when they find an opportunity to transmit
data.

A partially observable Markov decision process is used
at the secondary nodes in [43, 44] to select between oppor-
tunistic spectrum access and energy harvesting to maxi-
mize the system throughput in CRSNs. This system incurs
extremely high computational complexity when it comes to
low-powered secondary sensor nodes, especially when the
state space (related to energy queue size and data queue size)
is large.

In light of our prior discussion, our proposed MAC
protocol is the first distributed protocol for CRSNs that intel-
ligently addresses the disproportionate difference between
data transmission power and harvested power and uses that
to improve both the network throughput and total harvested
energy.

3. S-LEARN MAC Protocol

3.1. Network Architecture. We consider in this work a CRSN
in which sensor nodes are scattered around a particular
geographical area. Such nodes collect data from their sensors
and report to dedicated data sinks as shown in Figure 1. The
nodes opportunistically utilize the spectrum of PUs in the
area when such PUs are inactive. When the PUs are active,
sensors do not send data in the spectrum band to avoid
harmful interference with the licensed owners. Rather, they
use such opportunity to harvest RF energy from the radiated
power of the PUs.

The S-LEARN MAC protocol that we propose in this
work assumes that sensor nodes rely on harvested wireless
energy to operate in such CRSN. To bring the cost of the
hardware further down, we limit the sensor node to accessing
only one frequency band at any point in time, though it can
switch frequency to other available spectrum bands in the
future, if it so choses. Hence, sensor nodes cannot carry out
energy harvesting and opportunistic data transmission at the
same time, which reduces cost because it allows the sensor
node to reuse the same antenna for both the transmitter and
harvester circuitry, as shown in Figure 2.
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Figure 1: Cognitive sensor nodes utilize the spectrum of PUs to
either send data to sink nodes or harvest energy from PUs.
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Figure 2: Hardware for the sensor node. Notice that both the
transmitter and energy harvester use the same antenna.

We assume the time axis to be slotted into epochs, each
of duration 𝜏 seconds. Each sensor node needs to make a
decision every time epoch on which spectrum band it wants
to access, and after a small period of sensing that band it can
decide if a PU is active or not, so it can tell whether it should
utilize that spectrum band for transmitting a packet or for
harvesting energy.

The nodes that employ the S-LEARN protocol operate
autonomously and independently in a completely distributed
fashion, without the need to communicate their intentions
with each other or with a centralized controller. Particularly,
they adaptively learn about the behavior of the PUs and other
sensor nodes in the network by utilizing their own spectrum
sensing information. This keeps the system cost extremely
low and makes for a very robust network.

Due to the limitations of hardware technology, we also
assume that the energy consumed by the sensor node as it
transmits a packet in one time epoch, which we denote by
𝐸

Γ
, is much higher than the energy that the sensor node

can wirelessly harvest during a different time epoch of the
same period.This latter one is denoted by 𝐸h. In other words
𝐸

Γ
≫ 𝐸h. Hence, the sensor node should spend more of its

time attempting to harvest energy rather than transmitting so
it can maintain a constant and healthy battery level.

As will be illustrated momentarily, S-LEARN requires
sensor nodes to take turns in sending information in empty
spectrum opportunities, while other sensor nodes busily
work on harvesting energy from an available PU source.
This will minimize possible collisions between the competing
sensor nodes and maximize the total system throughput.

3.2. AlgorithmDescription. Collisions represent amajor chal-
lenge for distributed systems, and in power-limited scenarios
(such as sensor networks) it is doubly problematic, because
not only does it limit the throughput of the available spec-
trum, but it also wastes valuable energy (equal to 𝐸

Γ
) without

resulting in successful packet transmission. This causes the
node to spend excessive time in harvesting more energy to
reattempt sending the same data, which unduly increases the
delay the packets experience.

A trivial solution to this problem comes to mind, which
is to use a TDMA protocol run by a centralized controller. In
this case, the central controller will poll each sensor node in
a round-robin fashion to allow it to transmit data. However,
as explained previously, solving this issue using a centralized
controller is not desirable in the context of WSNs. This is
because the central coordinator will add extra unjustified cost
to the system, as it requires high computational power, large
memory, and extra transceiver power budget to allow it to
communicate with every single sensor in the network. In
addition, the central controller represents a single point-of-
failure for the system and results in scalability issues when
the number of sensor nodes increases. It also has to employ
a special protocol to register and access newcomer sensor
nodes and to detect and release defective energy-starved
nodes from its polling schedule.

Central control becomes even more difficult to operate
in cognitive radio environments because spectrum is not
guaranteed to be available, which means a dedicated control
channel might not persist over time. Finally, the central
controller can easily become a security vulnerability for
Denial-of-Service (DoS) and jamming attacks. Distributed
systems do not suffer from all these problems, as they provide
a lower cost solution that is scalable and does not have a single
point-of-failure.

Another simple approach to coordinate among sensor
nodes is for each sensor node to broadcast a schedule of its
intended transmissions to all other sensor nodes in a beacon at
the beginning of each time epoch. However, this approach is
also undesirable because it incurs extreme overheads in using
the channel capacity to send such control information instead
of actual data, thereby reducing the channel throughput.
More important, in cognitive radio scenarios (where there are
more than one spectrum band available) it means each sensor
node has to have multiple receivers tuned to the different
available spectrum channels to collect the control informa-
tion from other nodes in the system, which is extremely
expensive in terms of hardware costs and power requirements
for the nodes. The approach also suffers from the famous
hidden station problem, where sensor nodes might not hear
each other’s beacons but still affect each other’s transmission
at the receiver side.
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Figure 3: Four cognitive sensor nodes are executing the S-LEARNMAC protocol to coordinate access to two spectrum bands in a CRSN.

Therefore, autonomous and independent distributed
operation of sensor nodes is preferable so long as there is
an intelligent mechanism to reduce possible collisions. Our
S-LEARN algorithm is such a technique, in which sensor
nodes use their observations of the behavior of other nodes
in the network to progressively learn about the environment
and hence coordinate their transmissions.

In ourMAC protocol, the long time it takes for the sensor
nodes to harvest energy is utilized to our advantage to create
proper schedules at the different nodes to specify in which
bands and which time slots they are going to transmit their
data to avoid colliding with other nodes. Meanwhile, other
nodes use that time (when a specific node is transmitting) to
harvest RF energy from the PUs in the system. The idea is
illustrated by means of a simple example in Figure 3. In this
scenario, four sensor nodes are trying to coordinate access to
two spectrum bands in a CRSN. For simplicity, we assume
that the first band is always empty, while the second band is
occupied by an always-active PU.

From Figure 3, notice how the majority of sensor nodes
spend most of their time in the second band to harvest
RF energy, while leaving this band only once during a
cycle to attempt transmitting data. Observe that, due to
the distributed nature of the system, initially the nodes
might collide with each other. However, from these collision
incidents, the senor nodes start to learn and change their
transmission behavior until they settle on a configuration that
has no collisions (see cycle 𝑌 in Figure 3).

To progressively reach that desired configuration, each
node executing the S-LEARN MAC protocol maintains a
tentative schedule of its intended data transmission and har-
vesting operations. The schedule is maintained and updated
by the sensor node by factoring in the results of its own
spectrum sensing operations. The schedule is only used
locally and is never sent to other nodes in the network, which
avoids extra data overhead that affects throughput.

In addition, the schedule is limited to a length of 𝐾 time
epochs (slots) to reduce memory requirements at the node,
where 𝐾 is an integer number called the cycle length. We
require that the schedule at all sensor nodes be set to the
same 𝐾 value by design, but we do not require system-wide
synchronization. Therefore, the schedules of different nodes
do not have to be perfectly aligned (as illustrated in Figure 4).

In Figure 4, the cycle length is set to 𝐾 = 4 time slots
(time epochs are referred to as time slots in the context of

scheduling since schedules repeat over time).The cycle length
is selected in our MAC protocol to allow the sensor nodes to
send a maximum of one data packet during one cycle. The
remaining slots in the cycle must be used by the sensor node
to harvest enough energy for one transmission. Hence, we
must maintain the following condition on the cycle length

(𝐾 − 1) 𝐸h ≥ 𝐸

Γ (1)

or

𝐾 ≥

𝐸

Γ
+ 𝐸h

𝐸h

. (2)

Typically, however, we need 𝐾 to be slightly larger than
this value because the sensor node is not guaranteed to find
an available PU from which to harvest energy during all the
(𝐾 − 1) time slots, which means, depending on the activity
behavior of the PUs in the system, 𝐾might need to be larger
than that specified by (2) to ensure that the sensor nodes
harvest 𝐸

Γ
energy to be able to transmit one packet in that

cycle.
Remember that we assumed (in our simple example in

Figures 3 and 4) that the PU in band 1 is switched off,
which means the band is always empty and available for data
transmission, while the PU in band 2 is always on, which
makes this band a perfect candidate for energy harvesting.
If the sensor nodes somehow knew about this fact, they
would schedule their transmissions in band 1 and their energy
harvesting activities in band 2. This is the first problem our
MAC protocol attempts to solve, which is to identify the
bands that are best candidates for energy harvesting. The
nodes in S-LEARN identify this information autonomously
by observing the behavior of the PU activation/deactivation
within a cycle using two simple counters that they maintain,
h𝑘,𝑚
0

and h𝑘,𝑚
1

(to be explained shortly).
The next challenge the sensor nodes encounter is to

select one proper time slot within their schedule to transmit
their packet, such that they avoid selecting the same time
slot as other nodes in the network, hence resulting in a
collision. Figure 3 shows how the sensor nodes in S-LEARN
start with random selections thus sometimes successfully
transmitting and sometimes colliding with other nodes.
However, due to two more counters in each node, called Γ𝑘,𝑚

0

and Γ

𝑘,𝑚

1
, the nodes progressively and independently learn
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Figure 4: Tentative schedules maintained by the four sensor nodes during cycle 𝑌 in the example of Figure 3.

about the behavior of other nodes and start selecting the
time slot/spectrumband combinations that are different from
others. Figure 4 illustrates one desirable set of schedules at the
different nodes in our example. We can see from the figure
that node 1 decided to send its packet in band 1 during slot 3 of
the cycle. Notice also that the schedule of each node does not
have to be synchronized with other nodes for this technique
to work, because the schedules are repetitive and of the same
length 𝐾. For example, node 2 decided to transmit its packet
in band 1 in time slot 3 (relative to its own schedule), but this
is slot 1 relative to node 1’s schedule, and hence no collision
occurs between nodes 1 and 2.

3.3. S-LEARN Counters. To achieve the above described
scheduling policy, each sensor node running our proposed
MAC protocol must maintain a total of four counters for each
time slot 𝑘 ∈ [1, 𝐾] in the 𝐾-long schedule and for each
available spectrum band 𝑚 ∈ [1,𝑀] in the CRSN system.
Those counters are as follows.

(i) h𝑘,𝑚
1

: which represents the number of successful
energy harvesting incidents the sensor node observed
whenever it attempted to harvest energy from band𝑚
during time slot 𝑘 of its own schedule.

(ii) h𝑘,𝑚
0

: which is similar toh𝑘,𝑚
1

but counts the number
of failed energy harvesting incidents the sensor node
observed, because no active PU was found in that
band at that time slot.

(iii) Γ𝑘,𝑚
1

: which counts the number of successful packet
transmissions (for which an ACK was received) that
the sensor node observed whenever it attempted to
transmit through band𝑚 during time slot 𝑘 of its own
schedule.

(iv) Γ𝑘,𝑚
0

: which is similar to Γ𝑘,𝑚
1

but counts the number
of collisions the sensor node observed whenever it
attempted to transmit through that band and time
slot.

Each sensor node builds the tentative schedule for the
next cycle with the help of these counters, as will be described
shortly, and then starts abiding by the schedule for the whole
duration of the cycle. Notice that the sensor node can only

access one band at any given time slot due to its limited
hardware capabilities (see Figure 2). When accessing a band
at a certain time slot, the node senses that band at the
beginning of the slot, at which time four possibilities could
arise: (i) the sensor node attempts (based on its schedule) to
harvest energy from band𝑚 at time slot 𝑘, and when it senses
the band it finds that a PU is already sendingRF energy in that
band. In this case, the sensor node is lucky and harvests 𝐸h

energy from that band for the duration of the time slot and
then increments itsh𝑘,𝑚

1
counter by 1. (ii) Another possibility

is for the node to attempt to harvest energy, but when it
senses band 𝑚 at the beginning of slot 𝑘, it discovers that
the band is empty. This happens when the PU is inactive
during that time slot. In this case, the sensor node increments
its harvesting failure counter h𝑘,𝑚

0
by 1 and refrains from

sending information to avoid colliding with other nodes that
might have scheduled transmission in that slot/band pair. (iii)
The third possibility is when the sensor node attempts to
access the spectrum for data transmission (assuming there
are packets awaiting transmission in its queue), and it is
fortunate enough that sensing band 𝑚 at the beginning of
slot 𝑘 finds it empty. In that case, the node sends its data
packet and waits for an ACK from the data sink. If the ACK
arrives at the end of the time slot then the Γ𝑘,𝑚

1
counter is

incremented by 1; otherwise a collision must have happened
and rather the collision counter Γ𝑘,𝑚

0
is incremented by 1. (iv)

The final possibility is for the sensor node to access the band
for data transmission but finds it occupied by an active PU, at
which case the node takes this opportunity to harvest energy
anyway, increments its harvesting success counter h𝑘,𝑚

1
by 1,

and delays the transmission of its packet until the next cycle.
It cannot be missed that the four counters are initialized

to zero and then continuously updated in the aforementioned
manner as the S-LEARN protocol is executed by the sensor
nodes. However, at the end of each cycle (and after building
the tentative schedule for the next cycle), each of the four
counters is multiplied individually by a factor 𝐴 < 1.0

called the aging factor, which is common to all the counters.
This aging process helps the sensor nodes to slowly forget
old information that might not be relevant any more as the
network structure changes over time.
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It is worth mentioning that the counters are cumulative
and are not reset for as long as the sensor node is running.
However, multiplying by the aging factor, which is smaller
than unity, will reduce the value in these counters to almost
zero as time passes on.

3.4. Building the Schedule. At the beginning of each schedul-
ing cycle, the sensor node builds its own local schedule
by inspecting the values of its four counters. The schedule
involves two objectives: (a) reducing the chance of colliding
with other sensor nodes when the PU is inactive and (b)
harvesting RF energy when the PU is active.

Since the sensor node does not have prior knowledge
of the spectrum occupancy of the PU in the next cycle, it
uses the harvesting success and failure counters to estimate,
in a probabilistic way, the chance of finding an active PU
in a particular band. Hence, the sensor node calculates at
the beginning of the cycle the harvesting scores 𝜒

𝑚
for bands

𝑚 ∈ [1,𝑀], where

𝜒

𝑚
= max[𝑎

ℎ

1 + ∑

𝐾

𝑘=1
h𝑘,𝑚
1

1 + ∑

𝑀

𝑚=1
∑

𝐾

𝑘=1
h𝑘,𝑚
1

+ (1 − 𝑎

ℎ
)

1 + ∑

𝐾

𝑘=1
h𝑘,𝑚
1

1 + ∑

𝐾

𝑘=1
h𝑘,𝑚
1

+ ∑

𝐾

𝑘=1
h𝑘,𝑚
0

, 𝑝

𝑚
] .

(3)

The first term inside the max[] operator is an estimate
of the probability of finding an active PU in band 𝑚 when
compared to other bands in the system, while the second
term estimates the chance of successfully harvesting energy
(as opposed to failing) from band𝑚 when joining that band.
Notice that the first term only considers harvesting success
but not failures, while the second term considers both success
and failure of harvesting, albeit in one band only for the latter.
This combination allows the sensor node to quickly gravitate
toward bands with more PU activity, but at the same time not
completely abandon other bands with less PU activity. This
is useful since the PU activity can change over time. Finally,
𝑝

𝑚
in (3) is a small probability, which we set to 𝑝

𝑚
= 0.01 to

prevent sensor nodes from setting 𝜒
𝑚
= 0, thus ensuring that

sensor nodes will visit band 𝑚 for harvesting from time to
time to see if new PUs (that are suitable for harvesting) have
been recently activated in that band.

The parameter 𝑎
ℎ
is a constant that can be used to control

the dominant term in the above equation. The tradeoffs
resulting from this (and other parameters in S-LEARN) will
be described later in Section 6.

For each time slot in the cycle (except for the one chosen
for data transmission), a coin is flipped to choose one of the
𝑀 bands for energy harvesting, using uniform distribution
with the probability assigned to picking any band𝑚 ∈ [1,𝑀]

being

𝜇̂

𝑚
=

𝜒

𝑚

∑

𝑀

𝑚=1
𝜒

𝑚

. (4)

Once harvesting scheduling is performed, the second task
of the scheduler is to find a proper slot/band pair in which to
attempt the data packet transmission within that cycle. This

is done by calculating a transmit score 𝛾𝑘,𝑚 for each slot 𝑘 and
band𝑚 pair in the cycle utilizing three of our earlier counters
as follows:

𝛾

𝑘,𝑚
= max [Γ𝑘,𝑚

1
− 𝑎

𝑐
Γ

𝑘,𝑚

0
− 𝑎

𝑝
h
𝑘,𝑚

1
, 0] . (5)

The transmit scores of all slot/band pairs are calculated
and compared to find the maximum score. The transmit
scores equal to the maximum possible 𝛾

𝑘,𝑚 are then col-
lected and one of them is chosen at random with uniform
probability. That selected slot/band is no longer used for
harvesting, but for data transmission instead. On the other
hand, if the sensor node does not have any packets queued
for transmission by the start of the cycle, it skips the step of
choosing a slot/band pair for transmission and just uses the
earlier algorithm to schedule energy harvesting in all time
slots.

Equation (5) is easy to understand. The slot/band pairs
that witnessed more successful packet transmissions and
fewer collisions in the past receive a higher transmit score
𝛾

𝑘,𝑚, and hence they tend to be picked up by the schedule
for data transmission. Clearly, if a slot/band pair is heavily
contested with other nodes, Γ𝑘,𝑚

0
counter will detect this and

the sensor node will penalize it with lower 𝛾

𝑘,𝑚 score to
avoid transmitting a packet in that location in the future. In
addition, the last term in the equation prevents sensor nodes
from attempting to transmit in bands and/or slots where
PUs were most active in the past, as this means missing the
opportunity to transmit a packet in the current cycle.

Again, the parameters 𝑎
𝑐
and 𝑎

𝑝
are control parameters

that can fine-tune the S-LEARNprotocol to fit the user needs.
The tradeoffs resulting from such parameters are explained
later.

4. Simulation Framework

We test the performance of the S-LEARN MAC protocol
using simulations. We will first describe the simulated net-
work setups and then discuss the performancemeasures used
to evaluate the performance of our technique. Finally, we
present the simulation results in the next section.

4.1. Simulation Parameters. We investigate three different
setups of cognitive radio sensor networks. Such setups will
illustrate different capabilities of our proposed MAC proto-
col. In all such scenarios, we will assume a geographical area
with 𝑁 = 900 cognitive sensor nodes contending for access
to 𝑀 = 5 underutilized spectrum bands. Each spectrum
band is licensed to a PU that is active only part of the
time. For all setups used, we employ the most common PU
activity model used in literature, which is the one shown in
Figure 5 [45]. This model assumes slotted PU environments,
where the activity of the PU follows a two-state Discrete-
Time Markov Chain (DTMC). The transition probability
of the 𝑚th PU going from the inactive state to the active
state at the beginning of a time epoch is given by 𝛽

𝑚
,

while the reverse probability is 𝛼

𝑚
. Solving this DTMC

with the indicated transition probabilities, we notice that the
probability of the PU to be active at any given time epoch
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Figure 5: Activity state diagram for the PU in band𝑚.

is 𝜇
𝑚
= 𝛽

𝑚
/(𝛼

𝑚
+ 𝛽

𝑚
). We assume that the sensor nodes do

not know those transition probabilities; rather they will try
to figure them out from the sensing information they obtain
about the spectrum bands.

Packets are assumed to be fixed in size and each time
epoch is enough to perform sensing, send one packet, and
then receive the corresponding ACK. Packets are generated
(arrive) at a sensor node according to a random Bernoulli
process, and in each of the network setups (explained below),
we vary the mean packet arrival rate 𝜆

𝑛
at each sensor node

𝑛 ∈ [1,𝑁], thus increasing the load 𝜌 on the system. The
main simulation parameters are summarized in Table 1. The
simulation run is executed for a total of 𝑇 = 200,000 time
epochs, which is more than sufficient for the system to reach
steady-state.

To provide a reference for comparison, and to show
how progressive learning in S-LEARN can benefit the CRSN
system, we also simulate two more MAC protocols that fit
with our systemmodel and hardware capabilities: the first is a
purely random harvest and transmit technique, and the other
is amodified-CSMA protocol [46].

A sensor node in the first technique (the purely random
algorithm) picks, every time epoch, a band purely randomly
with equal probability out of the 𝑀 permissible bands and
then senses the band for the first part of the time epoch.
If the band turns out to be occupied by an active PU, the
sensor node starts harvesting energy from that PU for the rest
of the time epoch. On the other hand, if the node senses a
spectrum band that is unoccupied by a PU, the sensor node
attempts to transmit its data packet in that band immediately
and then waits for an ACK in the same time epoch. Whether
the packet went through successfully or not, the sensor node
does not attempt to send a new packet (or retransmit a failed
packet) until it has managed to harvest enough energy from
PUs equal to the transmission energy 𝐸

Γ
, even if it finds

another empty transmission opportunity. Rather, the node
keeps harvesting energy until its total harvested energy is
equal to the transmission energy, and only then the node
repeats its operations one more time.

Collisions are possible between nodes in the random har-
vest and transmit technique, but randomness in transmission
helps in reducing such collisions. The randomness occurs
because of three factors: the first factor is the randomness in
picking the spectrum band, and the second factor is the time
it takes a sensor node to collect𝐸

Γ
energy, which is random as

it varies depending on the random PU activity in each picked

Table 1: Main simulation parameters.

Parameter Value

Cognitive sensor nodes𝑁 900
Spectrum bands𝑀 5
Simulated time epochs 𝑇 200,000
PU active probability 𝜇

𝑚
{0.1, 0.3, 0.5, 0.7, 0.9}

Harvested energy per slot 𝐸h
10 𝜇W× 𝜏

Transmission energy per packet
𝐸

Γ

2.25mW× 𝜏

Cycle length𝐾 256
Harvesting parameter 𝑎

ℎ
0.6

Minimum probability 𝑝
𝑚

0.01
Transmit score parameter 𝑎

𝑐
0.5

Transmit score parameter 𝑎
𝑝

0.2

Aging factor 𝐴 0.8
Battery maximum stored energy
per sensor node 𝐵

10𝐸

Γ

Initial battery energy 0mW× 𝜏 (empty)
Mean packet arrival rate 𝜆

𝑛

(packet per epoch)
0.78 × 10

−3 to 3.52 × 10

−3

[𝑊min,𝑊max] for
modified-CSMA

[8, 10]

channel. The third contribution to randomness is obviously
due to finding the empty slot, which occurs at different times
for different nodes depending on the picked spectrum band
and the inactivity of the PU at that instant (which is in itself
is random). Hence collisions, though large, will not result
in a catastrophic collapse of the system, especially that it
takes much more time to charge the node (by wireless energy
harvesting) than to drain it (by transmitting a data packet).

The second algorithm we implement is the slotted CSMA
protocol modified for energy harvesting from the description
in [46]. Again, the sensor node picks every time epoch a band
purely randomly with equal probability out of the 𝑀 bands
and senses that band. If the band is occupied by an active
PU, the sensor harvests energy from that PU. Conversely, if
the node senses a spectrum band that is unoccupied by a PU,
and the node has enough energy in its battery, it attempts to
transmit its data packet in that band assuming that the CSMA
backoff counter reached zero. Otherwise the backoff counter
is decremented and the sensor node tires again in the next
empty transmission opportunity.

The backoff counter is part of the well-known binary
exponential backoff technique (used in the CSMA protocol
in IEEE 802.11 [47] and IEEE 802.15.4 [48]). It aims to reduce
possible collisions when the load on the system is high. This
technique requires each sensor node to defer its transmission
by a total of 𝑅 empty transmission opportunities, where 𝑅 is
a random integer drawn from a uniform distribution over
the interval [0, 2𝑤 − 1], which is known as the contention
window. The integer value of 𝑤 is dependent on the number
of consecutive collisions 𝑖 the node suffered in sending
the packet. The value of 𝑤 increases as 𝑖 increases but is
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maintained between the minimum and maximum values of
𝑊min and𝑊max, respectively, as follows:

𝑤 = min (𝑊min + 𝑖,𝑊max) . (6)

The values we use for𝑊min and𝑊max are shown in Table 1.
We will see that reducing collisions using this CSMA backoff
technique is beneficial in CRSNs, since it saves wasted energy
due to repeated retransmissions, which in turn also saves on
the overhead of harvesting wireless energy to make up for
such waste.

4.2. Network Setups. We will test our MAC protocol under
three different network setups to evaluate different aspects of
the progressive learning technique. These network setups are
as follows.

Setup 1: Stable Cognitive Radio Sensor Network. In this first
test, a total of 𝑁 = 900 sensor nodes operate for the
whole duration of the simulation within 𝑀 = 5 spectrum
bands occupied by five different PUs. The conditions of the
network are stable, as the different PUs are activated and
deactivated randomly, each within its own band, according
to the probabilities 𝜇

𝑚
= {0.1, 0.3, 0.5, 0.7, 0.9}. Each sensor

node has a queue to which packets arrive, with an average
arrival rate of 𝜆

𝑛
packets per time epoch (the arrival rate is

identical for all nodes, i.e., 𝜆
𝑛
= 𝜆, ∀1 ≤ 𝑛 ≤ 𝑁). We vary

the packet arrival rate 𝜆 to observe how our MAC protocol
handles increasing the load on the system.

Setup 2: New Sensor Nodes Joining the System. Compared to
the first network setup, this is a similar experiment except that
at the start of the simulation only 750 sensor nodes are active
in the 5 spectrum bands. In the middle of the simulation,
another 150 are added to the system for a total of 900 sensor
nodes. This allows us to investigate the robustness of our
technique as it allows the old and new nodes to progressively
learn about the new topology of the network and adapt to
this change.Wemaintain the same PU behavior as in the first
experiment.

Setup 3: Sudden Change in PU Behavior. As the PUs activate
and deactivate, the sensor nodes in our S-LEARN MAC
protocol start learning the behavior of such PUs to better
utilize their spectrum bands. The final test looks at the
possibility of the PUs changing their behavior to which the
nodes are now habituated. We observe how the sensor nodes
can easily detect the change in the PU behavior and readjust
their conduct to suit the new actions of the PUs. We design
this network setup to be a variant of the first configuration,
where the PUs are still activated and deactivated randomly.
However, only during the first half of the simulation, the
activation probabilities for the PUs are given by 𝜇

𝑚
=

{0.1, 0.3, 0.5, 0.7, 0.9}. In the middle of the simulation, the
most active PU becomes the least active and the least active
PU becomes the most active. In other words, the activation
probabilities for the PUs in the second half of the simulation
suddenly change to 𝜇

𝑚
= {0.9, 0.3, 0.5, 0.7, 0.1}. Notice that

the sensor nodes have to quickly and skillfully learn about this
new situation because they rely on finding themost active PU

for maximizing their harvested energy, and this most active
PU changes at time epoch 𝑡 = 𝑇/2.

4.3. PerformanceMeasures. The following performancemea-
sures are used to evaluate the performance of our proposed
MAC protocol and compare it to both the purely random
harvest and transmit technique and the modified-CSMA
algorithm.

Successfully Transmitted Packets (Throughput). We count the
number of packets transmitted successfully from the 𝑁

sensor nodes per time epoch (i.e., with anACK received), and
we denote this by 𝑠(𝑡). Notice that this number is expected to
be smaller than𝑀, because there are only𝑀 spectrum bands
available for the 𝑁 sensor nodes to transmit their packets at
any time epoch. Considering also that during a sizable chunk
of the time PUs will be active, thus preventing sensor nodes
from using such bands, the number will be even smaller.
In addition, some of the transmission opportunities will be
missed and some will also be occupied by collisions, further
reducing the 𝑠(𝑡) value. In the results, we sometimes evaluate
the average number of successfully transmitted packets per
epoch over all time epochs, which is given by 𝑆 = ∑

𝑇

𝑡=1
𝑠(𝑡)/𝑇.

Colliding Packets. We also count the number of packets
transmitted by the 𝑁 sensor nodes that have collided per
time epoch (i.e., did not receive an ACK), and we denote it
by 𝑐(𝑡). Notice that the actual number of collision incidents
per time epoch is smaller than 𝑐(𝑡) because two or more
colliding packets are required to result in one single collision.
However, the value of 𝑐(𝑡) is more relevant to our discussion
here because it shows both the missed spectrum opportunity
and wasted energy by sensor nodes. Since energy is hard to
come by, a packet that suffers a collision represents not only
a waste of spectrum but also a waste of energy that needs to
be harvested for excruciatingly long time before being used
to transmit a successful packet again. The average number of
colliding packets per epoch over all time is 𝐶 = ∑

𝑇

𝑡=1
𝑐(𝑡)/𝑇.

Successful Harvesting Events. We denote by ℎ(𝑡) the count of
sensor nodes that each managed to successfully harvest 𝐸h

energy from an active PU during a time epoch 𝑡. The average
of ℎ(𝑡) over all time epochs is 𝐻 = ∑

𝑇

𝑡=1
ℎ(𝑡)/𝑇. A desirable

value of ℎ(𝑡) is to be as close as possible to 𝑁, because that
means sensor nodes are mostly sitting in a PU-filled band to
harvest energy. However, since PUs are not always active, and
since nodes can be unlucky in guessingwhere to find an active
PU, the number will drop below𝑁.

Node Energy. Throughout the simulation, we also track the
energy level stored in the battery of each sensor node,
which we denote by 𝑒

𝑛
(𝑡). The average energy for all sensor

nodes per epoch is 𝑒(𝑡) = ∑

𝑁

𝑛=1
𝑒

𝑛
(𝑡)/𝑁, and the average

energy for all sensor nodes over all time epochs is 𝐸 =

∑

𝑇

𝑡=1
𝑒(𝑡)/𝑇. Higher values of 𝑒

𝑛
(𝑡) are desirable in a CRSN

because it allows nodes to adapt to changes in the network
configuration, such as the change of PU activity without
quickly running out of energy to transmit data. Nevertheless,
tomake the simulationmore realistic, we limit the capacity of
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the battery to a maximum value of 𝐵 = 10𝐸

Γ
. This represents

a very small sized and quite inexpensive battery that can only
transmit 10 packets before needing a recharge.

Queue Size at Sensor Nodes. The queue size at each sensor
node is also recorded at every time epoch as the simulation
progresses and is denoted by 𝑞

𝑛
(𝑡). The queue size is an

important parameter because it is directly proportional to
both the memory needed by the sensor node (which adds
to system cost) and also the delay the packets experience
as they are traversing the sensor node. The average queue
size over all sensor nodes per time epoch is evaluated as
𝑞(𝑡) = ∑

𝑁

𝑛=1
𝑞

𝑛
(𝑡)/𝑁, and the average queue size for all sensor

nodes over all time is denoted by 𝑄 = ∑

𝑇

𝑡=1
𝑞(𝑡)/𝑇. Smaller

values of 𝑄 are, of course, desirable to reduce system cost
and to provide better performance to end users. We do not
limit the queue size in our simulations, and packets are never
discarded.

Learning Time. The robustness of our MAC protocol to
changes in the network configurationwhen new sensor nodes
join the system is measured by the learning time, denoted by
𝑇

𝑙
. The learning time measures the time interval needed for

these newcomers (and incumbent nodes) to get acclimated
with the new system configuration, thus reaching a new
steady-state that is different from the old steady-state. We
define this interval to be equal to the number of consecutive
time epochs required for the number of successfully trans-
mitted packet 𝑠(𝑡), 𝑡 > 𝑇/2, to reach the new average value
of successful packets 𝑆new = ∑

𝑇

𝑡=𝑇/2
𝑠(𝑡)×2/𝑇 after the system

change happens at 𝑡 = 𝑇/2.

Adjustment Time. The adjustment time, represented by 𝑇

𝑎
,

is used when the activity of any of the PUs in the system
changes. It measures the time it takes nodes in our MAC
protocol to figure out the new PU activity behavior and
adjust their harvesting/transmission schedules to suit that
new configuration. We set this interval to be equal to the
number of consecutive time epochs required for the number
of successful harvesting events ℎ(𝑡), 𝑡 > 𝑇/2, to reach
the new average value of successful harvesting 𝐻new =

∑

𝑇

𝑡=𝑇/2
ℎ(𝑡) × 2/𝑇 after the PU behavior changes at 𝑡 = 𝑇/2.

Small leaning and adjustment times are desirable features of
our S-LEARN technique, and we show in the results that we
can control how small these values can get as part of a tradeoff
between overall system throughput and quick learning of the
system configuration.

5. Results and Discussion

5.1. Stable Network. Weuse the first network setup to observe
howour intelligent S-LEARNalgorithmbehaves compared to
the random harvest and transmit technique and themodified
slotted CSMA technique. Figures 6–10 show the results for
the stable CRSN presented earlier. The figures shown are for
the case where the average packet arrival rate at each sensor
node is 𝜆 = 1.95 × 10

−3 packets/epoch (or 0.5 packets per
scheduling cycle). The figures are drawn with the aid of a
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Figure 6: Number of successfully transmitted packets by sensor
nodes at each time epoch in the first network setup when 𝜆 =

1.95 × 10

−3 packets/epoch.

500-point moving average to allow for more solid lines and
better clarity.

Figure 6 shows the number of successfully transmitted
packets 𝑠(𝑡) by sensor nodes at each time epoch. The fig-
ure clearly shows the contribution of the proposed MAC
algorithm which provides performance almost double that
of the random and modified-CSMA techniques. This is
achieved by the sensor nodes progressively and intelligently
learning about the behavior of the PUs in the system and
each other and dynamically adjusting their internal schedules
to minimize collisions amongst themselves (see Figure 7)
and also increase the harvested energy (see Figure 8). Both
effects contribute to the increase in throughput since collision
reduction increases the available spectrum for successful data
transmission and reduces the wasted energy at the node.
Saving such energy, and being able to find where the active
PUs are located thus harvesting even more energy, means
that each sensor node always has a healthy amount of energy
stored in its battery (see Figure 9) available to send any packet
when an opportunity is presented, without the need to delay
such packet until energy is harvested at a very slow pace.
This, of course, reduces the queue size (and packet delay) at
each node, as evident by Figure 10. Of course, being able to
transmit the packet with minimum number of collisions, and
henceminimum number of retransmissions, also contributes
to the lower packet delay and the smaller queue size seen in
Figure 10.

The behavior of S-LEARN under various loads on the
system is similar.We show a comparison between the number
of successful packets for each of the three algorithms versus
load in Figure 11. The superiority of the S-LEARN MAC
protocol compared to others techniques is remarkable. Of
course, as the load on the system increases beyond a certain
point, the amount of energy needed by the sensor nodes
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Figure 8: Number of sensor nodes successfully harvesting energy
at each time epoch in the first network setup when 𝜆 = 1.95 ×
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becomes quite large that the nodes can no longer harvest
enough energy to meet such demand. In this case the
throughput (number of successful packets) of all algorithms
(including ours) levels off and the amount of stored energy in
the node battery starts diminishing (see Figure 12). Clearly,
though, ourMACprotocol providesmuch higher throughput
even at higher loads compared to the random harvest and
transmit and the modified-CSMA protocols. In addition,
S-LEARN retains energy in the battery to a better extent
compared to these two techniques, of which the random
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Figure 9: Energy stored in each node averaged over all nodes at
each time epoch in the first network setup when 𝜆 = 1.95 ×
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Figure 10: Queue length at each node averaged over all nodes
during each time epoch in the first network setup when 𝜆 = 1.95 ×
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harvest and transmit technique is the worst. That is why its
packets start accumulating heavily in the queue waiting for a
long time, as evident by Figure 13.

5.2. Newcomer Nodes. In the second scenario, we investigate
what happens when the CRSN is supplemented by extra
sensor nodes while in operation. We want to see if the new
nodes can be seamlessly integrated into the system or if they
do cause undesirable instability. Hence, we run the network
using only 750 sensor nodes, but at time 𝑡 = 𝑇/2, another 150
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Figure 12: Energy stored in eachnode averaged over all nodes versus
arrival rate (system load) in the first network setup.

nodes are activated. This brings the total number of sensor
nodes to 900, which is similar to what we had in our first
experiment. Hence, the results of the earlier section should
provide a reference for comparison.

Figure 14 shows the number of packets successfully trans-
mitted by nodes versus time. It is evident that the random and
modified-CSMA techniques cannot adopt properly to this
20% increase in load on the system. On the other hand, our
S-LEARN MAC protocol progressively learns about the new
situation and gradually adjusts the schedules at the different
sensor nodes to accommodate the newcomer population,
thus increasing the overall system throughput, albeit on the
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Figure 13: Queue length at each node averaged over all nodes versus
arrival rate (system load) in the first network setup.
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Figure 14: Number of successfully transmitted packets by sensor
nodes at each time epoch in the second network setup when 𝜆 =

1.95 × 10

−3 packets/epoch.

expense of some increase in collisions, which is natural at
such high level of load (see Figure 15).

In Figure 16 we show the learning time 𝑇
𝑙
the S-LEARN

technique requires for different loads on the system (i.e.,
different packet arrival rates). To find𝑇

𝑙
we count the number

of consecutive epochs it takes for the system to move from
the old 𝑆 value (e.g., 𝑆 = 1.38 in Figure 14) to the new 𝑆

value (e.g., 𝑆 = 1.60 in Figure 14). We notice that as the load
on the system increases, so does the learning time, which is
expected.This continues until the load becomes high enough
that the system is saturated, which means the throughput of
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Figure 16: Learning time for sensor nodes versus arrival rate
(system load) in the second network setup. Results are averaged over
multiple simulation runs.

the system can no longer increase even with more offered
load (see also Figure 11). At that point, the learning process
cannot do anything to improve the system throughput and
its interval starts diminishing.

5.3. PU Disruption. In the final test we disturb the process of
energy harvesting at the sensor nodes by abruptly changing
the activity probability of the most active and the least active
PUs in the system at themiddle of simulation. Instead of 𝜇

5
=

0.9, the most active PU switches to 𝜇

5
= 0.1, and the least

active PU, which used to have 𝜇
1
= 0.1, continues the rest of

the simulation with 𝜇
1
= 0.9.
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Figure 17: Number of sensor nodes successfully harvesting energy
at each time epoch in the third network setup when 𝜆 = 1.95 ×

10

−3 packets/epoch.

Both the random harvest and transmit along with the
modified-CSMA algorithms are not affected by this change
because they do notmake any assumptions about the location
of the PU; rather they randomly and uniformly pick a band; if
a PU is active in that band they harvest its energy. However,
this behavior is not very useful because it can only harvest
a small amount of wireless energy as seen in Figure 17.
However, our S-LEARN technique not only can harvest more
energy by predicting where the most active PUs are, but also
can adjust once it notices that it is not harvesting enough
energy, and recalibrate its harvesting scores to move to the
spectrum band that corresponds to the most active PU (see
Figure 17).

During the adjustment time, of course, there is a slight
drop in the harvested energy and also a slight drop in the
number of successful packets (see Figure 18), which is affected
because of lack of sufficient energy. It is worth mentioning
here that a larger battery reservoir (which we did not use) can
help in such cases because it can accommodate continuing
data transmission while adjusting the harvesting process to
the new system conditions, albeit with the disadvantage of
adding extra cost to the system.

It is also interesting to mention that the adjustment time
𝑇

𝑎
is not dependent on the system load as the equations gov-

erning the harvesting process (see (3) and (4)) are decoupled
from the data transmission process (system load). This is
evident in Figure 19, which shows the adjustment time versus
average packet arrival rate.

6. Tradeoffs

The control parameters in our S-LEARN technique can be
quite useful to tune the behavior of the CRSN to steer it
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Figure 19: Adjustment time for sensor nodes versus arrival rate
(system load) in the third network setup. Results are averaged over
multiple simulation runs.

in the direction most desirable for the network designer.
For example, the network can be optimized for overall
throughput and minimum delay, or on the other hand, it can
be optimized to quickly react to changes in the network setup,
such aswhennewnodes are introduced to the systemorwhen
PU activity changes.

To show some examples on how the different parameters
can control the performance of the powerful S-LEARN pro-
tocol, we rerun our simulations based on different values of
the control parameters when 𝜆 = 2.344×10

−3 packets/epoch.
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Figure 20: Average number of successfully transmitted packets by
sensor nodes versus different values of the aging parameter 𝐴.

For example Figures 20–23 show the behavior of the network
throughput, collisions, learning time, and adjustment time
versus different possible values of the aging parameter 𝐴. All
other parameters are retained to the values in Table 1.

It is easy to see that a larger 𝐴 value (closer to the
maximum of 1.0) results in higher throughput and smaller
number of collisions. This is because the sensor nodes start
retaining the knowledge they learn from the network and
use that to produce better schedules to avoid colliding with
each other. However, when the sensor nodes cannot forget
old information, they cannot adapt quickly to changes in
the network configuration as evident by progressively longer
learning time and adjustment time required when 𝐴 is
closer to 1.0. The designer can balance both requirements by
choosing a midpoint value for the 𝐴 parameter or, if he/she
so desires, can prefer higher throughput compared to quick
response, at which case a higher 𝐴 value is more befitting.
Or the designer might prefer better response to changes by
reducing the value of the aging factor 𝐴, albeit on the cost of
losing some throughput.

The transmit score parameter 𝑎

𝑐
balances a tradeoff

between throughput and learning time. Higher values of 𝑎
𝑐

force the sensor nodes to quickly leave contended bands and
search for different ones, which reduces their aggressiveness
in obtaining spectrum, thus reducing throughput (as shown
in Figure 24). However, it also allows the newcomer nodes
to avoid aggressively disturbing the incumbent nodes but
substitute that with them looking for other empty bands.This
results in a smoother joining process and shorter learning
time (see Figure 25).

Similar observations can be made about the second
transmit parameter 𝑎

𝑝
(see Figures 26 and 27), though for a

different reason. Higher values of 𝑎
𝑝
force sensor nodes to

leave bands that have been used successfully in the past for
harvesting, which allows the sensor nodes to avoid spectrum
bands that are commonly used by active PUs. However,
this also means that some transmission opportunities in
empty bands are missed (remember that no PU is active for
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Figure 21: Average number of colliding packets from sensor nodes
versus different values of the aging parameter 𝐴.

0

2000

4000

6000

8000

10000

Le
ar

ni
ng

 ti
m

e,
T
l

0.65 0.7 0.75 0.8 0.85 0.90.6
A

Figure 22: Learning time for sensor nodes versus different values of
the aging parameter 𝐴.

100% of the time), which means that throughput will suffer.
Conversely, newcomers (who are starved of bandwidth) will
have an easier time finding empty slots (that incumbents
avoided) and hence will have a shorter learning time.

Finally, the harvesting parameter 𝑎

ℎ
has an effect on

adjustment time and the amount of energy harvesting possi-
ble.When 𝑎

ℎ
is small, that is, when (1−𝑎

ℎ
) is large, the second

parameter in (3) becomes more dominant, allowing a sensor
node to quickly detect changes in the PU activity probability
and move quicker to a more active PU for harvesting, which
translates into a small adjustment time.This is clearly evident
from Figure 28. However, a higher 𝑎

ℎ
value allows a node

to stick more closely to the spectrum where it has harvested
more energy compared to other spectrumbands, whichwhen
PU activity is stable allows the node to harvest much more
energy in the long run (as shown in Figure 29).
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Figure 23: Adjustment time for sensor nodes versus different values
of the aging parameter 𝐴.
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Figure 24: Average number of successfully transmitted packets by
sensor nodes versus different values of the transmit parameter 𝑎
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Figure 28: Adjustment time for sensor nodes versus different values
of the harvesting parameter 𝑎
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Figure 29: Average number of sensor nodes successfully harvesting
energy versus different values of the harvesting parameter 𝑎

ℎ
.

Hence, for stable networks we recommend a value of
𝑎

ℎ
= 1.0 to increase the level of energy harvesting, but for

nodes where PUs can change their behavior frequently, we
recommend a value of 𝑎

ℎ
≤ 0.7 to keep the adjustment time

small.

7. Conclusions

A novel MAC protocol was introduced for CRSNs. Each
node in this protocol develops a schedule to coordinate
its energy harvesting and data transmission activities. The
schedule is built based on the perceived environment of
PUs and other sensor nodes. This is achieved by simply
maintaining four counters and using them intelligently to
infer the surrounding conditions. We proved, via simulation,
that the performance enhancements are remarkable, reaching
almost twice that of random harvest/transmit and modified-
CSMA techniques.

In addition, the S-LEARN protocol is quite robust and
can easily adapt to new sensor nodes joining the network or
to PUs changing their activity behavior. Not only that, but
such robustness and performance are controllable by a set of
parameters that can be changed to suit the objective of end
users of the system.
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