96 research outputs found

    Cooperative Relay Broadcast Channels

    Full text link
    The capacity regions are investigated for two relay broadcast channels (RBCs), where relay links are incorporated into standard two-user broadcast channels to support user cooperation. In the first channel, the Partially Cooperative Relay Broadcast Channel, only one user in the system can act as a relay and transmit to the other user through a relay link. An achievable rate region is derived based on the relay using the decode-and-forward scheme. An outer bound on the capacity region is derived and is shown to be tighter than the cut-set bound. For the special case where the Partially Cooperative RBC is degraded, the achievable rate region is shown to be tight and provides the capacity region. Gaussian Partially Cooperative RBCs and Partially Cooperative RBCs with feedback are further studied. In the second channel model being studied in the paper, the Fully Cooperative Relay Broadcast Channel, both users can act as relay nodes and transmit to each other through relay links. This is a more general model than the Partially Cooperative RBC. All the results for Partially Cooperative RBCs are correspondingly generalized to the Fully Cooperative RBCs. It is further shown that the AWGN Fully Cooperative RBC has a larger achievable rate region than the AWGN Partially Cooperative RBC. The results illustrate that relaying and user cooperation are powerful techniques in improving the capacity of broadcast channels.Comment: Submitted to the IEEE Transactions on Information Theory, July 200

    State-Dependent Relay Channel with Private Messages with Partial Causal and Non-Causal Channel State Information

    Full text link
    In this paper, we introduce a discrete memoryless State-Dependent Relay Channel with Private Messages (SD-RCPM) as a generalization of the state-dependent relay channel. We investigate two main cases: SD-RCPM with non-causal Channel State Information (CSI), and SD-RCPM with causal CSI. In each case, it is assumed that partial CSI is available at the source and relay. For non-causal case, we establish an achievable rate region using Gel'fand-Pinsker type coding scheme at the nodes informed of CSI, and Compress-and-Forward (CF) scheme at the relay. Using Shannon's strategy and CF scheme, an achievable rate region for causal case is obtained. As an example, the Gaussian version of SD-RCPM is considered, and an achievable rate region for Gaussian SD-RCPM with non-causal perfect CSI only at the source, is derived. Providing numerical examples, we illustrate the comparison between achievable rate regions derived using CF and Decode-and-Forward (DF) schemes.Comment: 5 pages, 2 figures, to be presented at the IEEE International Symposium on Information Theory (ISIT 2010), Austin, Texas, June 201

    Gaussian Broadcast Channels with an Orthogonal and Bidirectional Cooperation Link

    Full text link
    This paper considers a system where one transmitter broadcasts a single common message to two receivers linked by a bidirectional cooperation channel, which is assumed to be orthogonal to the downlink channel. Assuming a simplified setup where, in particular, scalar relaying protocols are used and channel coding is not exploited, we want to provide elements of response to several questions of practical interest. Here are the main underlying issues: 1. The way of recombining the signals at the receivers; 2. The optimal number of cooperation rounds; 3. The way of cooperating (symmetrically or asymmetrically; which receiver should start cooperating in the latter case); 4. The influence of spectral resources. These issues are considered by studying the performance of the assumed system through analytical results when they are derivable and through simulation results. For the particular choices we made, the results sometimes do not coincide with those available for the discrete counterpart of the studied channel

    Secrecy in the 2-User Symmetric Deterministic Interference Channel with Transmitter Cooperation

    Full text link
    This work presents novel achievable schemes for the 2-user symmetric linear deterministic interference channel with limited-rate transmitter cooperation and perfect secrecy constraints at the receivers. The proposed achievable scheme consists of a combination of interference cancelation, relaying of the other user's data bits, time sharing, and transmission of random bits, depending on the rate of the cooperative link and the relative strengths of the signal and the interference. The results show, for example, that the proposed scheme achieves the same rate as the capacity without the secrecy constraints, in the initial part of the weak interference regime. Also, sharing random bits through the cooperative link can achieve a higher secrecy rate compared to sharing data bits, in the very high interference regime. The results highlight the importance of limited transmitter cooperation in facilitating secure communications over 2-user interference channels.Comment: 5 pages, submitted to SPAWC 201

    Cooperative Multi-Cell Networks: Impact of Limited-Capacity Backhaul and Inter-Users Links

    Full text link
    Cooperative technology is expected to have a great impact on the performance of cellular or, more generally, infrastructure networks. Both multicell processing (cooperation among base stations) and relaying (cooperation at the user level) are currently being investigated. In this presentation, recent results regarding the performance of multicell processing and user cooperation under the assumption of limited-capacity interbase station and inter-user links, respectively, are reviewed. The survey focuses on related results derived for non-fading uplink and downlink channels of simple cellular system models. The analytical treatment, facilitated by these simple setups, enhances the insight into the limitations imposed by limited-capacity constraints on the gains achievable by cooperative techniques

    Capacity of a Class of Broadcast Relay Channels

    Full text link
    Consider the broadcast relay channel (BRC) which consists of a source sending information over a two user broadcast channel in presence of two relay nodes that help the transmission to the destinations. Clearly, this network with five nodes involves all the problems encountered in relay and broadcast channels. New inner bounds on the capacity region of this class of channels are derived. These results can be seen as a generalization and hence unification of previous work in this topic. Our bounds are based on the idea of recombination of message bits and various effective coding strategies for relay and broadcast channels. Capacity result is obtained for the semi-degraded BRC-CR, where one relay channel is degraded while the other one is reversely degraded. An inner and upper bound is also presented for the degraded BRC with common relay (BRC-CR), where both the relay and broadcast channel are degraded which is the capacity for the Gaussian case. Application of these results arise in the context of opportunistic cooperation of cellular networks.Comment: 5 pages, to appear in proc. IEEE ISIT, June 201
    corecore