5,289 research outputs found

    Towards Vehicle-to-everything Autonomous Driving: A Survey on Collaborative Perception

    Full text link
    Vehicle-to-everything (V2X) autonomous driving opens up a promising direction for developing a new generation of intelligent transportation systems. Collaborative perception (CP) as an essential component to achieve V2X can overcome the inherent limitations of individual perception, including occlusion and long-range perception. In this survey, we provide a comprehensive review of CP methods for V2X scenarios, bringing a profound and in-depth understanding to the community. Specifically, we first introduce the architecture and workflow of typical V2X systems, which affords a broader perspective to understand the entire V2X system and the role of CP within it. Then, we thoroughly summarize and analyze existing V2X perception datasets and CP methods. Particularly, we introduce numerous CP methods from various crucial perspectives, including collaboration stages, roadside sensors placement, latency compensation, performance-bandwidth trade-off, attack/defense, pose alignment, etc. Moreover, we conduct extensive experimental analyses to compare and examine current CP methods, revealing some essential and unexplored insights. Specifically, we analyze the performance changes of different methods under different bandwidths, providing a deep insight into the performance-bandwidth trade-off issue. Also, we examine methods under different LiDAR ranges. To study the model robustness, we further investigate the effects of various simulated real-world noises on the performance of different CP methods, covering communication latency, lossy communication, localization errors, and mixed noises. In addition, we look into the sim-to-real generalization ability of existing CP methods. At last, we thoroughly discuss issues and challenges, highlighting promising directions for future efforts. Our codes for experimental analysis will be public at https://github.com/memberRE/Collaborative-Perception.Comment: 19 page

    SEIP: Simulation-based Design and Evaluation of Infrastructure-based Collective Perception

    Full text link
    Infrastructure-based collective perception, which entails the real-time sharing and merging of sensing data from different roadside sensors for object detection, has shown promise in preventing occlusions for traffic safety and efficiency. However, its adoption has been hindered by the lack of guidance for roadside sensor placement and high costs for ex-post evaluation. For infrastructure projects with limited budgets, the ex-ante evaluation for optimizing the configurations and placements of infrastructure sensors is crucial to minimize occlusion risks at a low cost. This paper presents algorithms and simulation tools to support the ex-ante evaluation of the cost-performance tradeoff in infrastructure sensor deployment for collective perception. More specifically, the deployment of infrastructure sensors is framed as an integer programming problem that can be efficiently solved in polynomial time, achieving near-optimal results with the use of certain heuristic algorithms. The solutions provide guidance on deciding sensor locations, installation heights, and configurations to achieve the balance between procurement cost, physical constraints for installation, and sensing coverage. Additionally, we implement the proposed algorithms in a simulation engine. This allows us to evaluate the effectiveness of each sensor deployment solution through the lens of object detection. The application of the proposed methods was illustrated through a case study on traffic monitoring by using infrastructure LiDARs. Preliminary findings indicate that when working with a tight sensing budget, it is possible that the incremental benefit derived from integrating additional low-resolution LiDARs could surpass that of incorporating more high-resolution ones. The results reinforce the necessity of investigating the cost-performance tradeoff

    iDriving: Toward Safe and Efficient Infrastructure-directed Autonomous Driving

    Full text link
    Autonomous driving will become pervasive in the coming decades. iDriving improves the safety of autonomous driving at intersections and increases efficiency by improving traffic throughput at intersections. In iDriving, roadside infrastructure remotely drives an autonomous vehicle at an intersection by offloading perception and planning from the vehicle to roadside infrastructure. To achieve this, iDriving must be able to process voluminous sensor data at full frame rate with a tail latency of less than 100 ms, without sacrificing accuracy. We describe algorithms and optimizations that enable it to achieve this goal using an accurate and lightweight perception component that reasons on composite views derived from overlapping sensors, and a planner that jointly plans trajectories for multiple vehicles. In our evaluations, iDriving always ensures safe passage of vehicles, while autonomous driving can only do so 27% of the time. iDriving also results in 5x lower wait times than other approaches because it enables traffic-light free intersections

    The OpenCDA Open-source Ecosystem for Cooperative Driving Automation Research

    Full text link
    Advances in Single-vehicle intelligence of automated driving have encountered significant challenges because of limited capabilities in perception and interaction with complex traffic environments. Cooperative Driving Automation~(CDA) has been considered a pivotal solution to next-generation automated driving and intelligent transportation. Though CDA has attracted much attention from both academia and industry, exploration of its potential is still in its infancy. In industry, companies tend to build their in-house data collection pipeline and research tools to tailor their needs and protect intellectual properties. Reinventing the wheels, however, wastes resources and limits the generalizability of the developed approaches since no standardized benchmarks exist. On the other hand, in academia, due to the absence of real-world traffic data and computation resources, researchers often investigate CDA topics in simplified and mostly simulated environments, restricting the possibility of scaling the research outputs to real-world scenarios. Therefore, there is an urgent need to establish an open-source ecosystem~(OSE) to address the demands of different communities for CDA research, particularly in the early exploratory research stages, and provide the bridge to ensure an integrated development and testing pipeline that diverse communities can share. In this paper, we introduce the OpenCDA research ecosystem, a unified OSE integrated with a model zoo, a suite of driving simulators at various resolutions, large-scale real-world and simulated datasets, complete development toolkits for benchmark training/testing, and a scenario database/generator. We also demonstrate the effectiveness of OpenCDA OSE through example use cases, including cooperative 3D LiDAR detection, cooperative merge, cooperative camera-based map prediction, and adversarial scenario generation

    People tracking by cooperative fusion of RADAR and camera sensors

    Get PDF
    Accurate 3D tracking of objects from monocular camera poses challenges due to the loss of depth during projection. Although ranging by RADAR has proven effective in highway environments, people tracking remains beyond the capability of single sensor systems. In this paper, we propose a cooperative RADAR-camera fusion method for people tracking on the ground plane. Using average person height, joint detection likelihood is calculated by back-projecting detections from the camera onto the RADAR Range-Azimuth data. Peaks in the joint likelihood, representing candidate targets, are fed into a Particle Filter tracker. Depending on the association outcome, particles are updated using the associated detections (Tracking by Detection), or by sampling the raw likelihood itself (Tracking Before Detection). Utilizing the raw likelihood data has the advantage that lost targets are continuously tracked even if the camera or RADAR signal is below the detection threshold. We show that in single target, uncluttered environments, the proposed method entirely outperforms camera-only tracking. Experiments in a real-world urban environment also confirm that the cooperative fusion tracker produces significantly better estimates, even in difficult and ambiguous situations

    Analyzing Infrastructure LiDAR Placement with Realistic LiDAR Simulation Library

    Full text link
    Recently, Vehicle-to-Everything(V2X) cooperative perception has attracted increasing attention. Infrastructure sensors play a critical role in this research field; however, how to find the optimal placement of infrastructure sensors is rarely studied. In this paper, we investigate the problem of infrastructure sensor placement and propose a pipeline that can efficiently and effectively find optimal installation positions for infrastructure sensors in a realistic simulated environment. To better simulate and evaluate LiDAR placement, we establish a Realistic LiDAR Simulation library that can simulate the unique characteristics of different popular LiDARs and produce high-fidelity LiDAR point clouds in the CARLA simulator. Through simulating point cloud data in different LiDAR placements, we can evaluate the perception accuracy of these placements using multiple detection models. Then, we analyze the correlation between the point cloud distribution and perception accuracy by calculating the density and uniformity of regions of interest. Experiments show that when using the same number and type of LiDAR, the placement scheme optimized by our proposed method improves the average precision by 15%, compared with the conventional placement scheme in the standard lane scene. We also analyze the correlation between perception performance in the region of interest and LiDAR point cloud distribution and validate that density and uniformity can be indicators of performance. Both the RLS Library and related code will be released at https://github.com/PJLab-ADG/LiDARSimLib-and-Placement-Evaluation.Comment: 7 pages, 6 figures, accepted to the IEEE International Conference on Robotics and Automation (ICRA'23

    Collaborative Perception in Autonomous Driving: Methods, Datasets and Challenges

    Full text link
    Collaborative perception is essential to address occlusion and sensor failure issues in autonomous driving. In recent years, theoretical and experimental investigations of novel works for collaborative perception have increased tremendously. So far, however, few reviews have focused on systematical collaboration modules and large-scale collaborative perception datasets. This work reviews recent achievements in this field to bridge this gap and motivate future research. We start with a brief overview of collaboration schemes. After that, we systematically summarize the collaborative perception methods for ideal scenarios and real-world issues. The former focuses on collaboration modules and efficiency, and the latter is devoted to addressing the problems in actual application. Furthermore, we present large-scale public datasets and summarize quantitative results on these benchmarks. Finally, we highlight gaps and overlook challenges between current academic research and real-world applications. The project page is https://github.com/CatOneTwo/Collaborative-Perception-in-Autonomous-DrivingComment: 18 pages, 6 figures. Accepted by IEEE Intelligent Transportation Systems Magazine. URL: https://github.com/CatOneTwo/Collaborative-Perception-in-Autonomous-Drivin

    Towards the simulation of cooperative perception applications by leveraging distributed sensing infrastructures

    Get PDF
    With the rapid development of Automated Vehicles (AV), the boundaries of their function alities are being pushed and new challenges are being imposed. In increasingly complex and dynamic environments, it is fundamental to rely on more powerful onboard sensors and usually AI. However, there are limitations to this approach. As AVs are increasingly being integrated in several industries, expectations regarding their cooperation ability is growing, and vehicle-centric approaches to sensing and reasoning, become hard to integrate. The proposed approach is to extend perception to the environment, i.e. outside of the vehicle, by making it smarter, via the deployment of wireless sensors and actuators. This will vastly improve the perception capabilities in dynamic and unpredictable scenarios and often in a cheaper way, relying mostly in the use of lower cost sensors and embedded devices, which rely on their scale deployment instead of centralized sensing abilities. Consequently, to support the development and deployment of such cooperation actions in a seamless way, we require the usage of co-simulation frameworks, that can encompass multiple perspectives of control and communications for the AVs, the wireless sensors and actuators and other actors in the environment. In this work, we rely on ROS2 and micro-ROS as the underlying technologies for integrating several simulation tools, to construct a framework, capable of supporting the development, test and validation of such smart, cooperative environments. This endeavor was undertaken by building upon an existing simulation framework known as AuNa. We extended its capabilities to facilitate the simulation of cooperative scenarios by incorporat ing external sensors placed within the environment rather than just relying on vehicle-based sensors. Moreover, we devised a cooperative perception approach within this framework, showcasing its substantial potential and effectiveness. This will enable the demonstration of multiple cooperation scenarios and also ease the deployment phase by relying on the same software architecture.Com o rápido desenvolvimento dos Veículos Autónomos (AV), os limites das suas funcional idades estão a ser alcançados e novos desafios estão a surgir. Em ambientes complexos e dinâmicos, é fundamental a utilização de sensores de alta capacidade e, na maioria dos casos, inteligência artificial. Mas existem limitações nesta abordagem. Como os AVs estão a ser integrados em várias indústrias, as expectativas quanto à sua capacidade de cooperação estão a aumentar, e as abordagens de perceção e raciocínio centradas no veículo, tornam-se difíceis de integrar. A abordagem proposta consiste em extender a perceção para o ambiente, isto é, fora do veículo, tornando-a inteligente, através do uso de sensores e atuadores wireless. Isto irá melhorar as capacidades de perceção em cenários dinâmicos e imprevisíveis, reduzindo o custo, pois a abordagem será baseada no uso de sensores low-cost e sistemas embebidos, que dependem da sua implementação em grande escala em vez da capacidade de perceção centralizada. Consequentemente, para apoiar o desenvolvimento e implementação destas ações em cooperação, é necessária a utilização de frameworks de co-simulação, que abranjam múltiplas perspetivas de controlo e comunicação para os AVs, sensores e atuadores wireless, e outros atores no ambiente. Neste trabalho será utilizado ROS2 e micro-ROS como as tecnologias subjacentes para a integração das ferramentas de simulação, de modo a construir uma framework capaz de apoiar o desenvolvimento, teste e validação de ambientes inteligentes e cooperativos. Esta tarefa foi realizada com base numa framework de simulação denominada AuNa. Foram expandidas as suas capacidades para facilitar a simulação de cenários cooperativos através da incorporação de sensores externos colocados no ambiente, em vez de depender apenas de sensores montados nos veículos. Além disso, concebemos uma abordagem de perceção cooperativa usando a framework, demonstrando o seu potencial e eficácia. Isto irá permitir a demonstração de múltiplos cenários de cooperação e também facilitar a fase de implementação, utilizando a mesma arquitetura de software

    Automated Driving Systems Data Acquisition and Processing Platform

    Full text link
    This paper presents an automated driving system (ADS) data acquisition and processing platform for vehicle trajectory extraction, reconstruction, and evaluation based on connected automated vehicle (CAV) cooperative perception. This platform presents a holistic pipeline from the raw advanced sensory data collection to data processing, which can process the sensor data from multiple CAVs and extract the objects' Identity (ID) number, position, speed, and orientation information in the map and Frenet coordinates. First, the ADS data acquisition and analytics platform are presented. Specifically, the experimental CAVs platform and sensor configuration are shown, and the processing software, including a deep-learning-based object detection algorithm using LiDAR information, a late fusion scheme to leverage cooperative perception to fuse the detected objects from multiple CAVs, and a multi-object tracking method is introduced. To further enhance the object detection and tracking results, high definition maps consisting of point cloud and vector maps are generated and forwarded to a world model to filter out the objects off the road and extract the objects' coordinates in Frenet coordinates and the lane information. In addition, a post-processing method is proposed to refine trajectories from the object tracking algorithms. Aiming to tackle the ID switch issue of the object tracking algorithm, a fuzzy-logic-based approach is proposed to detect the discontinuous trajectories of the same object. Finally, results, including object detection and tracking and a late fusion scheme, are presented, and the post-processing algorithm's improvements in noise level and outlier removal are discussed, confirming the functionality and effectiveness of the proposed holistic data collection and processing platform
    corecore