134 research outputs found

    On the Non-Orthogonal Layered Broadcast Codes in Cooperative Wireless Networks

    Get PDF
    A multi-fold increase in spectral eļ¬ƒciency and throughput are envisioned in the ļ¬fth generation of cellular networks to meet the requirements of International Telecommunication Union (ITU) IMT-2020 on massive connectivity and tremendous data traļ¬ƒc. This is achieved by evolution in three aspects of current networks. The ļ¬rst aspect is shrinking the cell sizes and deploying dense picocells and femtocells to boost the spectral reuse. The second is to allocate more spectrum resources including millimeter-wave bands. The third is deploying highly eļ¬ƒcient communications and multiple access techniques. Non-orthogonal multiple access (NOMA) is a promising communication technique that complements the current commercial spectrum access approach to boost the spectral eļ¬ƒciency, where different data streams/usersā€™ data share the same time, frequency and code resource blocks (sub-bands) via superimposition with each other. The receivers decode their own messages by deploying the successive interference cancellation (SIC) decoding rule. It is known that the NOMA coding is superior to conventional orthogonal multiple access (OMA) coding, where the resources are split among the users in either time or frequency domain. The NOMA based coding has been incorporated into other coding techniques including multi-input multi-output (MIMO), orthogonal frequency division multiplexing (OFDM), cognitive radio and cooperative techniques. In cooperative NOMA codes, either dedicated relay stations or stronger users with better channel conditions, act as relay to leverage the spatial diversity and to boost the performance of the other users. The advantage of spatial diversity gain in relay-based NOMA codes, is deployed to extend the coverage area of the network, to mitigate the fading eļ¬€ect of multipath channel and to increase the system throughput, hence improving the system eļ¬ƒciency. In this dissertation we consider the multimedia content delivery and machine type communications over 5G networks, where scalable content and low complexity encoders is of interest. We propose cross-layer design for transmission of successive reļ¬nement (SR) source code interplayed with non-orthogonal layered broadcast code for deployment in several cooperative network architectures. Firstly, we consider a multi-relay coding scheme where a source node is assisted by a half-duplex multi-relay non-orthogonal amplify-forward (NAF) network to communicate with a destination node. Assuming the channel state information (CSI) is not available at the source node, the achievable layered diversity multiplexing tradeoļ¬€ (DMT) curve is derived. Then, by taking distortion exponent (DE) as the ļ¬gure of merit, several achievable lower bounds are proved, and the optimal expected distortion performance under high signal to noise ratio (SNR) approximation is explicitly obtained. It is shown that the proposed coding can achieve the multi-input single-output (MISO) upper bound under certain regions of bandwidth ratios, by which the optimal performance in these regions can be explicitly characterized. Further the non-orthogonal layered coding scheme is extended to a multi-hop MIMO decode-forward (DF) relay network where a set of DE lower bounds is derived. Secondly, we propose a layered cooperative multi-user scheme based on non-orthogonal amplify-forward (NAF) relaying and non-orthogonal multiple access (NOMA) codes, aiming to achieve multi-user uplink transmissions with low complexity and low signaling overhead, particularly applicable to the machine type communications (MTC) and internet of things (IoT) systems. By assuming no CSI available at the transmitting nodes, the proposed layered codes make the transmission rate of each user adaptive to the channel realization. We derive the close-form analytical results on outage probability and the DMT curve of the proposed layered NAF codes in the asymptotic regime of high SNR, and optimize the end-to-end performance in terms of the exponential decay rate of expected distortion. Thirdly, we consider a single relay network and study the non-orthogonal layered scheme in the general SNR regime. A layered relaying scheme based on compress-forward (CF) is introduced, where optimization of end to end performance in terms of expected distortion is conducted to jointly determine network parameters. We further derive the explicit analytical optimal solution with two layers in the absence of channel knowledge. Finally, we consider the problem of multicast of multi-resolution layered messages over downlink of a cellular system with the assumption of CSI is not available at the base station (BS). Without loss generality, spatially random users are divided into two groups, where the near group users with better channel conditions decode for both layers, while the users in the second group decode for base layer only. Once the BS launches a multicast message, the ļ¬rst group users who successfully decoded the message, deploy a distributed cooperating scheme to assist the transmission to the other users. The cooperative scheme is naive but we will prove it can eļ¬€ectively enhance the network capacity. Closed form outage probability is explicitly derived for the two groups of users. Further it is shown that diversity order equal to the number of users in the near group is achievable, hence the coding gain of the proposed distributed scheme fully compensate the lack of CSI at the BS in terms of diversity order

    Cooperative Non-Orthogonal Layered Multicast Multiple Access for Heterogeneous Networks

    Get PDF
    This paper proposes a novel design of cooperative non-orthogonal layered multicast multiple access in a heterogeneous network, where the information is encoded into the messages of high-priority (HP) and low-priority (LP). Two types of multicast users coexist in the network: 1) regular users (RUs), which are located far away from the base-station (BS) and expect to decode only the HP message (due to the weak channels); 2) advanced users (AUs), which are located close to the BS and expect to decode both HP and LP messages. To improve the reliability of layered multicast, we consider that the successful AUs (those AUs who successfully decode the HP and LP messages) serve as potential relays to assist other AUs/RUs. Based on this idea, two novel cooperation strategies are proposed for different cases of channel information availability. For each proposed strategy, we derive closed-form exact outage probabilities of AUs and RUs, and then further analyze their diversity orders. Moreover, considering that the layered multicast is outage-constrained, we theoretically evaluate the energy consumption of both strategies and demonstrate their energy saving gains over the direct non-orthogonal multiple access for layered multicast. Finally, our theoretical analysis is verified by numerical results, and the advantages of the proposed strategies are also demonstrated

    Nonorthogonal Multiple Access and Subgrouping for Improved Resource Allocation in Multicast 5G NR

    Get PDF
    The ever-increasing demand for applications with stringent constraints in device density, latency, user mobility, or peak data rate has led to the appearance of the last generation of mobile networks (i.e., 5G). However, there is still room for improvement in the network spectral efficiency, not only at the waveform level but also at the Radio Resource Management (RRM). Up to now, solutions based on multicast transmissions have presented considerable efficiency increments by successfully implementing subgrouping strategies. These techniques enable more efficient exploitation of channel time and frequency resources by splitting users into subgroups and applying independent and adaptive modulation and coding schemes. However, at the RRM, traditional multiplexing techniques pose a hard limit in exploiting the available resources, especially when users' QoS requests are unbalanced. Under these circumstances, this paper proposes jointly applying the subgrouping and Non-Orthogonal Multiple Access (NOMA) techniques in 5G to increase the network data rate. This study shows that NOMA is highly spectrum-efficient and could improve the system throughput performance in certain conditions. In the first part of this paper, an in-depth analysis of the implications of introducing NOMA techniques in 5G subgrouping at RRM is carried out. Afterward, the validation is accomplished by applying the proposed approach to different 5G use cases based on vehicular communications. After a comprehensive analysis of the results, a theoretical approach combining NOMA and time division is presented, which improves considerably the data rate offered in each use case.This work was supported in part by the Italian Ministry of University and Research (MIUR), within the Smart Cities framework, Project Cagliari2020 ID: PON04a2_00381; in part by the Basque Government under Grant IT1234-19; and in part by the Spanish Government [Project PHANTOM under Grant RTI2018-099162-B-I00 (MCIU/AEI/FEDER, UE)]

    Performance Analysis of NOMA Multicast Systems Based on Rateless Codes with Delay Constraints

    Get PDF
    To achieve an efficient and reliable data transmission in time-varying conditions, a novel non-orthogonal multiple access (NOMA) transmission scheme based on rateless codes (NOMA-RC) is proposed in the multicast system in this paper. Using rateless codes at the packet level, the system can generate enough encoded data packets according to usersā€™ requirements to cope with adverse environments. The performance of the NOMA-RC multicast system with delay constraints is analyzed over Rayleigh fading channels. The closed-form expressions for the frame error ratio and the average transmission time are derived for two cases which are a broadcast communication scenario (Scenario 1) and a relay communication scenario (Scenario 2). Under the condition that the quality of service for the edge user is satisfied, an optimization model of power allocation is established to maximize the sum rate. Simulation results show that Scenario 2 can provide better block error ratio performance and exhibit less transmission time than Scenario 1. When compared with orthogonal multiple access (OMA) with rateless codes system, the proposed system can save on the transmission time and improve the system throughput

    Network-coded NOMA with antenna selection for the support of two heterogeneous groups of users

    Get PDF
    The combination of Non-Orthogonal Multiple Access (NOMA) and Transmit Antenna Selection (TAS) techniques has recently attracted significant attention due to the low cost, low complexity and high diversity gains. Meanwhile, Random Linear Coding (RLC) is considered to be a promising technique for achieving high reliability and low latency in multicast communications. In this paper, we consider a downlink system with a multi-antenna base station and two multicast groups of single-antenna users, where one group can afford to be served opportunistically, while the other group consists of comparatively low power devices with limited processing capabilities that have strict Quality of Service (QoS) requirements. In order to boost reliability and satisfy the QoS requirements of the multicast groups, we propose a cross-layer framework including NOMAbased TAS at the physical layer and RLC at the application layer. In particular, two low complexity TAS protocols for NOMA are studied in order to exploit the diversity gain and meet the QoS requirements. In addition, RLC analysis aims to facilitate heterogeneous users, such that, sliding window based sparse RLC is employed for computational restricted users, and conventional RLC is considered for others. Theoretical expressions that characterize the performance of the proposed framework are derived and verified through simulation results
    • ā€¦
    corecore