11 research outputs found

    Sum Rate and Fairness Analysis for the MU-MIMO Downlink under PSK Signalling: Interference Suppression vs Exploitation

    Get PDF
    In this paper, we analyze the sum rate performance of multi-user multiple-input multiple-output (MU-MIMO) systems, with a finite constellation phase-shift keying (PSK) input alphabet. We analytically calculate and compare the achievable sum rate in three downlink transmission scenarios: 1) without precoding, 2) with zero forcing (ZF) precoding 3) with closed form constructive interference (CI) precoding technique. In light of this, new analytical expressions for the average sum rate are derived in the three cases, and Monte Carlo simulations are provided throughout to validate the analysis. Furthermore, based on the derived expressions, a power allocation scheme that can ensure fairness among the users is also proposed. The results in this work demonstrate that, the CI strictly outperforms the other two schemes, and the performance gap between the considered schemes increases with increase in the MIMO size. In addition, the CI provides higher fairness and the power allocation algorithm proposed in this paper can achieve maximum fairness index

    Rate Splitting with Finite Constellations: The Benefits of Interference Exploitation vs Suppression

    Get PDF
    Rate-Splitting (RS) has been proposed recently to enhance the performance of multi-user multiple-input multiple-output (MU-MIMO) systems. In RS, a user message is split into a common and a private part, where the common part is decoded by all users, while the private part is decoded only by the intended user. In this paper, we study RS under a phase-shift keying (PSK) input alphabet for multi-user multi-antenna system and propose a constructive interference (CI) exploitation approach to further enhance the sum-rate achieved by RS under PSK signaling. To that end, new analytical expressions for the ergodic sum-rate are derived for two precoding techniques of the private messages, namely, 1) a traditional interference suppression zero-forcing (ZF) precoding approach, 2) a closed-form CI precoding approach. Our analysis is presented for perfect channel state information at the transmitter (CSIT), and is extended to imperfect CSIT knowledge. A novel power allocation strategy, specifically suited for the finite alphabet setup, is derived and shown to lead to superior performance for RS over conventional linear precoding not relying on RS (NoRS). The results in this work validate the significant sum-rate gain of RS with CI over the conventional RS with ZF and NoRS

    Rate-Splitting Multiple Access: Finite Constellations, Receiver Design, and SIC-free Implementation

    Full text link
    Rate-Splitting Multiple Access (RSMA) has emerged as a novel multiple access technique that enlarges the achievable rate region of Multiple-Input Multiple-Output (MIMO) broadcast channels with linear precoding. In this work, we jointly address three practical but fundamental questions: (1) How to exploit the benefit of RSMA under finite constellations? (2) What are the potential and promising ways to implement RSMA receivers? (3) Can RSMA still retain its superiority in the absence of successive interference cancellers (SIC)? To address these concerns, we first propose low-complexity precoder designs taking finite constellations into account and show that the potential of RSMA is better achieved with such designs than those assuming Gaussian signalling. We then consider some practical receiver designs that can be applied to RSMA. We notice that these receiver designs follow one of two principles: (1) SIC: cancelling upper layer signals before decoding the lower layer and (2) non-SIC: treating upper layer signals as noise when decoding the lower layer. In light of this, we propose to alter the precoder design according to the receiver category. Through link-level simulations, the effectiveness of the proposed precoder and receiver designs are verified. More importantly, we show that it is possible to preserve the superiority of RSMA over Spatial Domain Multiple Access (SDMA), including SDMA with advanced receivers, even without SIC at the receivers. Those results therefore open the door to competitive implementable RSMA strategies for 6G and beyond communications.Comment: Submitted to IEEE for publicatio

    Cooperative Multi-Cell MIMO Downlink Precoding With Finite-Alphabet Inputs

    No full text
    corecore