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With 5G communication systems on the horizon, efficient interference management in heterogeneous multicell networks is more
vital than ever.This paper investigates the linear precoder design for downlinkmulticell multiple-input multiple-output orthogonal
frequency-division multiplexing (MIMO-OFDM) systems, where base stations (BSs) coordinate to reduce the interference across
space and frequency. In order to minimize the overall feedback overhead in next-generation systems, we consider precoding
schemes that require statistical channel state information (CSI) only. We apply the random matrix theory to approximate the
ergodic weighted sum rate of the system with a closed form expression. After formulating the approximation for general channels,
we reduce the results to a more compact form using the Kronecker channel model for which several multicarrier concepts such
as frequency selectivity, channel tap correlations, and intercarrier interference (ICI) are rigorously represented. We find the local
optimal solution for the maximization of the approximate rate using a gradient method that requires only the covariance structure
of the MIMO-OFDM channels. Within this covariance structure are the channel tap correlations and ICI information, both of
which are taken into consideration in the precoder design. Simulation results show that the rate approximation is very accurate
even for very small MIMO-OFDM systems and the proposed method converges rapidly to a near-optimal solution that competes
with networked MIMO and precoders based on instantaneous full CSI.

1. Introduction

Multicell multiple-input multiple-output orthogonal fre-
quency-division multiplexing (MIMO-OFDM) is a promis-
ing technology for next-generation telecommunication net-
works. Both MIMO and OFDM are known to facilitate the
wireless networks with excellent capabilities; when MIMO
and OFDM are combined together, MIMO-OFDM achieves
tremendous capacities that will be enjoyed by 5G systems in
the near future. While MIMO-OFDM systems have superb
performance, several challenges invoked by MIMO and
OFDM characteristics are involved in the system design [1–
6]. Other competing technologies in 5G networks are fil-
tered-OFDM (F-OFDM) and universal filtered multicarrier
(UFMC) that are receiving attention in the literature [7, 8].

MIMO wireless cellular systems can achieve excellent
data-rates if proper coordination among base stations (BSs) is

employed to suppress the intercell and intracell interference.
The highest system capacity is achieved by networkedMIMO
where both the channel state information (CSI) and the data
streams of all users in different cells are made available at all
BSs [9, 10]. A more practical and less complex form of coor-
dination is through joint linear precoding with only the CSI
of the users shared among BSs [11–13]. In this case, each BS
obtains the CSI of its intracell users and shares it with its adja-
cent BSs. Such precoding approach is very efficient for small
number of BS antennas and it can alleviate the interference to
a significant degree. As the number of BS antennas increases,
the amount of signaling overhead for passing the CSI among
BSs becomes taxing [14]. This problem is aggravated in fre-
quency-selective channels employing OFDM where the CSI
is different on each subcarrier. To overcome this difficulty,
the precoders can be designed based on statistical CSI at the
transmitter rather than instantaneous CSI [3, 15–20]. Since
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the statistical CSI changes much slower than instantaneous
CSI, the BSs need to be updated less frequently, hence, much
less signaling overhead.While there is a performance loss due
to the lack of exact CSI, precoder design based on statistical
CSI for large-scale MIMO systems is an efficient approach
because the performance loss is negligible [18, 20].

In order to design MIMO precoders with statistical CSI,
the ergodic rate, which is a function of the covariance
matrices of theMIMO channels, must bemaximized over the
precoders [16]. To facilitate the maximization, the ergodic
rate can be approximated by a compact deterministic expres-
sion when the MIMO system is large-scale. The optimization
can then be carried out on this deterministic approximation
which is a function of the statistics of the channels [20–23];
thus, the solution is a set of precoders that are functions of the
statistical CSI. Deterministic approximation to the Shannon
rate can be achieved based on techniques such as Bai and
Silverstein [22, 24, 25], Gaussian method [26, 27], Lindeberg
principle [20, 26, 28, 29], or a combination of them [22,
Theorem 6.9], [26]. All of these methods approximate the
Shannon transform of large dimensional random matrices,
but they are based on slightly different assumptions.

The deterministic equivalents of the rates for large-scale
MIMO systems that are derived in recent works [20–23, 25,
26, 29] are functions of the channel statistics, so they can be
used as objective functions for precoder designwith statistical
CSI.This has been done in [21–23] where closed formoptimal
precoders are derived for simple single-user scenarios. In
[20], an uplink multiuser multicell MIMO system is consid-
ered and suboptimal linear precoders are found based on
the Lindeberg approximation to the ergodic rate. We shall
extend this methodology to the problem of downlink mul-
tiuser multicell MIMO-OFDM linear precoder design with
statistical CSI. Considering the downlink leads to a somewhat
different power constraint compared to the uplink, and the
OFDM assumption gives rise to concepts such as frequency
selectivity [17, 30, 31], channel tap correlations [17, 31–34], and
intercarrier interference (ICI) [1, 35–38], all of which must
be taken into account in the precoder design. Our derivation
of statistical precoding for the downlink multicell MIMO-
OFDM system is a unification of previous works [20, 29], and
while several details are different from these two works, this
derivation is not the main contribution. The main point of
thiswork is applying the already established results of random
matrix theory to the MIMO-OFDM scenario in order to
study the impact of frequency selectivity, tap correlations,
and ICI on the statistical precoder design and system perfor-
mance.

We shall study the downlink multicell MIMO-OFDM
linear precoder design with statistical CSI using the deter-
ministic approximation of the Shannon rate, a problem stud-
ied before only under instantaneous CSI [12]. In particular,
with instantaneous CSI, the channel statistics are not used
in precoder design and one may try to optimize the instan-
taneous rate, as is done in [12] where it has been shown that
such an optimization problem is nonconvex and a suboptimal
solution has been proposed using the Karush-Kuhn-Tucker
(KKT) conditions. In this work, however, we assume that
there is only statistical CSI available at the BSs and we design

linear precoders that maximize the ergodic weighted sum
rate. As opposed to the instantaneous case, for analysis of the
ergodic rate, we need a statistical model for the MIMO chan-
nel which is usually determined by a covariance structure [23,
39]. We first consider the general correlated channel model
with arbitrary probability distribution described in [23] that
includes several statistical models such as the independent
and identically distributed (i.i.d.) Rayleigh fading channel
and the Kronecker channel [39]. Then we reduce the results
to a simpler form for the Kronecker channel model.

To maximize the ergodic rate, inspired by [20, 23, 29], we
find a deterministic approximation to the Shannon rate of the
MIMO-OFDM system using the random matrix theory [21,
40]. The methodology will be applied to the MIMO-OFDM
system with tap correlations and intercarrier interference.
Then, assuming that the BSs have the statistical CSI of all
users in the form of covariance matrices, we form a weighted
sum rate maximization problem and propose a suboptimal
solution using the KKT conditions along with the gradient
descent method. Our simulations show that the approxima-
tion is quiet accurate even for small size MIMO-OFDM sys-
tems and the proposed algorithm converges rapidly to amax-
imum which has a substantial improvement over isotropic
precoding. The results only slightly underperform those
obtained with perfect instantaneous CSI [12].We then extend
to the casewhere the frequency-selective channel suffers from
correlation among channel taps and we show that the pre-
coders become frequency dependent under tap correlations.
We study the effects of tap correlation on the precoder design
and system performance. Next, we allow ICI among OFDM
subcarriers which is caused by carrier frequency offset due
to synchronization errors and Doppler shifts [1]. The ICI
introduces a new source of interference in addition to the
intercell and intracell interference. We find the deterministic
approximation to the rate under ICI and then study its impact
on the precoder design and system performance. Our simu-
lations show that while spatial correlations, tap correlations,
and ICI decrease the system sum rate, our method allevi-
ates this performance loss by incorporating the correlation
information and ICI intensity information into the precoder
design. It must be noted that our statistical CSI basedmethod
is applicable to networked MIMO with full cooperation
where the BSs share the channel statistics and the transmit
data.

The remainder of the paper is organized as follows. In
Section 5, we provide the system model and formulate the
optimization problem. In Section 3, we obtain the determin-
istic approximation to the ergodic rate function. In Section 4,
we give a gradient-descent-based algorithm to obtain the
suboptimal precoders. In Section 5, we discuss the channel
model and how the formulas simplify for the separable
channel models. In Section 6, we extend to the case where
there is ICI. In Section 7, we present simulation results, and
finally, conclusions are given in Section 8.

We denote matrices, vectors, and scalars by upper-case
bold letters as in X, lower-case bold letters as in x, and non-
bold letters as in𝑋 and 𝑥, respectively.Moreover,X∗,X𝑇, and
X𝐻 denote conjugate, transpose, and conjugate-transpose,
respectively. The element on the 𝑖th row and 𝑗th column of
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Figure 1: Multicell MIMO-OFDM system model.

a matrix is denoted by [X]𝑖,𝑗, and the 𝑖th element of a vector
is denoted by [x]𝑖. Vectorization, trace, and expected value
operators are denoted by vec{⋅}, tr{⋅}, and E[⋅], respectively.
The all-one and all-zero vectors of size𝑁 and identity matrix
of size𝑁×𝑁 are denoted by 1𝑁, 0𝑁, and I𝑁, respectively.The
operators Re{⋅} and Im{⋅} represent real part and imaginary
part, respectively.

2. System Model and Problem Formulation

2.1. SystemModel. We consider a downlinkmulticellMIMO-
OFDM wireless network shown in Figure 1, with 𝑀 BSs
each serving 𝐾 users over 𝑁 subcarriers. All BSs have 𝑁𝐵
transmitting antennas while each user has 𝑁𝑈 receiving
antennas with𝑁𝐵 ≥ 𝑁𝑈. The 𝑘th user under BS𝑚 is denoted
by (𝑚, 𝑘). The data vector to be precoded and transmitted
by BS 𝑚 to its 𝑘th user, that is, the data vector for user(𝑚, 𝑘), over subcarrier 𝑛 is denoted by x(𝑚,𝑘),𝑛 ∈ C𝑁𝑈 , and
the corresponding linear precoding matrix is denoted by
F(𝑚,𝑘),𝑛 ∈ C𝑁𝐵×𝑁𝑈 . The downlink channel matrix from BS 𝑚
to user (𝑚, 𝑘) over subcarrier 𝑛 is denoted by H𝑚 ,(𝑚,𝑘),𝑛 ∈
C𝑁𝑈×𝑁𝐵 . The thermal noise at user (𝑚, 𝑘) on subcarrier 𝑛 is
denoted by z(𝑚,𝑘),𝑛 ∈ C𝑁𝑈 . Based on the above notations, the
received signal at user (𝑚, 𝑘) on subcarrier 𝑛 is given by

y(𝑚,𝑘),𝑛 = H𝑚,(𝑚,𝑘),𝑛F(𝑚,𝑘),𝑛x(𝑚,𝑘),𝑛

+ 𝐾∑
𝑘 ̸=𝑘

H𝑚,(𝑚,𝑘),𝑛F(𝑚,𝑘),𝑛x(𝑚,𝑘),𝑛

+ 𝑀∑
𝑚 ̸=𝑚

𝐾∑
𝑘=1

H𝑚 ,(𝑚,𝑘),𝑛F(𝑚 ,𝑘),𝑛x(𝑚 ,𝑘),𝑛

+ z(𝑚,𝑘),𝑛,

(1)

where the second and third terms represent the intracell and
intercell interference, respectively.We assume that x(𝑚,𝑘),𝑛 and
z(𝑚,𝑘),𝑛 are i.i.d. Gaussian with E[x(𝑚,𝑘),𝑛x𝐻(𝑚,𝑘),𝑛] = I and
E[z(𝑚,𝑘),𝑛z𝐻(𝑚,𝑘),𝑛] = I. We also assume that MIMO channels
are independent across users and BSs.

Each user is assumed to know its own instantaneous CSI
for detecting the data [16, 20, 22, 23, 29], which leads to the

instantaneous data-rate for user (𝑚, 𝑘) on subcarrier 𝑛 given
by

𝑟(𝑚,𝑘),𝑛
= log I +H𝑚,(𝑚,𝑘),𝑛F(𝑚,𝑘),𝑛F

𝐻
(𝑚,𝑘),𝑛H

𝐻
𝑚,(𝑚,𝑘),𝑛Θ

−1
(𝑚,𝑘),𝑛

 ,
(2)

where Θ(𝑚,𝑘),𝑛 denotes the total interference plus noise on
subcarrier 𝑛 given by

Θ(𝑚,𝑘),𝑛

= I + 𝐾∑
𝑘 ̸=𝑘

H𝑚,(𝑚,𝑘),𝑛F(𝑚,𝑘),𝑛F
𝐻
(𝑚,𝑘),𝑛H

𝐻
𝑚,(𝑚,𝑘),𝑛

+ 𝑀∑
𝑚 ̸=𝑚

𝐾∑
𝑘=1

H𝑚,(𝑚,𝑘),𝑛F(𝑚 ,𝑘),𝑛F
𝐻
(𝑚 ,𝑘),𝑛H

𝐻
𝑚 ,(𝑚,𝑘),𝑛,

(3)

where the first, second, and third terms represent the noise
power, intracell interference power, and intercell interference
power, respectively.

2.2. Problem Formulation. Our goal is to design precoder
matrices based only on the second-order statistics of the
MIMO channels. While the second-order statistics fully
describe the statistical CSI for zero mean Gaussian channels,
it is only partial statistical CSI for non-Gaussian channels.
Defining F = {F(𝑚,𝑘),𝑛} as the set of precoder matrices, we
formulate the weighted sum rate optimization problem as

max
F

EH [ 𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝑤(𝑚,𝑘) 𝑁∑
𝑛=1

𝑟(𝑚,𝑘),𝑛]

s.t. 𝐾∑
𝑘=1

𝑁∑
𝑛=1

tr (F(𝑚,𝑘),𝑛F𝐻(𝑚,𝑘),𝑛) = 𝑃𝑚, ∀𝑚,
(P1)

where EH[⋅] denotes expectation over the channel matrices{H𝑚 ,(𝑚,𝑘),𝑛} and𝑤(𝑚,𝑘) is the maximization weight associated
with user (𝑚, 𝑘). The constraint is due to the fact that BS𝑚 is
subject to the transmit power limit of𝑃𝑚. Note that the power
constraint introduces coupling across subcarriers, while the
rate function given by (2) is independent for each subcarrier
and coupled across users and BSs only, a feature of OFDM
systems.

Define the covariance matrix ofH𝑚 ,(𝑚,𝑘),𝑛 as

Ω𝑚 ,(𝑚,𝑘),𝑛 = EH [vec {H𝑚 ,(𝑚,𝑘),𝑛} vec𝐻 {H𝑚 ,(𝑚,𝑘),𝑛}] . (4)

Unlike designing precoders based instantaneous CSI as in
[12], the precoders in F are restricted to be functions of{Ω𝑚 ,(𝑚,𝑘),𝑛}. The above approach to precoder design has
several advantages. It is very practical since acquiring full CSI
for all 𝑚, (𝑚, 𝑘), 𝑛 induces huge communication overhead
due to CSI exchanges. Also, since the higher-order statistics
can be costly to obtain, the second-order statistics often serve
as the minimal statistics for various kinds of estimations.

In order to solve the nonconvex problem (P1), we need to
find the expectation EH[𝑟(𝑚,𝑘),𝑛]. However, this expectation
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makes the problem hard to analyse even for the single-
user case [16]. Therefore, it is useful to replace the objective
function by the analytically tractable approximation �̃�(𝑚,𝑘),𝑛 ≈
EH[𝑟(𝑚,𝑘),𝑛]. Thanks to the random matrix theory, as will be
shown in the next section, we can find the deterministic
approximation �̃�(𝑚,𝑘),𝑛 that allows analytical expressions for
the ergodic rate [20–23, 29]. The approximation is appropri-
ate for our problem as �̃�(𝑚,𝑘),𝑛 is a function of second-order
statistics. While we have asymptotic convergence �̃�(𝑚,𝑘),𝑛 →
EH[𝑟(𝑚,𝑘),𝑛] when the number of BS antennas is large, our
simulations show that the approximation is also accurate for
MIMO-OFDM systems with very small number of antennas.

We now replace the ergodic rate EH[𝑟(𝑚,𝑘),𝑛] with its
deterministic approximation �̃�(𝑚,𝑘),𝑛 and form the analytically
tractable problem

max
F

𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝑤(𝑚,𝑘) 𝑁∑
𝑛=1

�̃�(𝑚,𝑘),𝑛

s.t. 𝐾∑
𝑘=1

𝑁∑
𝑛=1

tr (F(𝑚,𝑘),𝑛F𝐻(𝑚,𝑘),𝑛) = 𝑃𝑚, ∀𝑚.
(P2)

While analytically tractable, problem (P2) is still nonconvex.
Since the global optimum to a nonconvex optimization prob-
lem is generally hard to obtain, we will develop an algorithm
to find the local optimal solution to (P2). In the next sections,
we will first derive the asymptotic approximation �̃�(𝑚,𝑘),𝑛
and then propose an algorithm to obtain locally optimum
precoder matrices.

3. Asymptotic Approximation of the Rate

In this section we derive the asymptotic approximation to the
ergodic rate function. From (2) and (3), it follows that the rate
function can be rewritten as

𝑟(𝑚,𝑘),𝑛 = +log I +∑
𝑚

∑
𝑘

H𝑚 ,(𝑚,𝑘),𝑛

⋅ F(𝑚 ,𝑘),𝑛F𝐻(𝑚 ,𝑘),𝑛H𝐻𝑚,(𝑚,𝑘),𝑛
 − log

I

+ ∑∑
(𝑚 ,𝑘) ̸=(𝑚,𝑘)

H𝑚 ,(𝑚,𝑘),𝑛F(𝑚 ,𝑘),𝑛F
𝐻
(𝑚 ,𝑘),𝑛H

𝐻
𝑚 ,(𝑚,𝑘),𝑛

 .

(5)

To express the rate more compactly, define

A(𝑚,𝑘),𝑛 = [H1,(𝑚,𝑘),𝑛F1,𝑛, . . . ,H𝑚,(𝑚,𝑘),𝑛F𝑚,𝑛, . . . ,
H𝑀,(𝑚,𝑘),𝑛F𝑀,𝑛] ,

B(𝑚,𝑘),𝑛 = [H1,(𝑚,𝑘),𝑛F1,𝑛, . . . ,H𝑚,(𝑚,𝑘),𝑛F̆𝑚,𝑘,𝑛, . . . ,
H𝑀,(𝑚,𝑘),𝑛F𝑀,𝑛] ,

(6)

in which

F𝑚 ,𝑛 = [F(𝑚 ,1),𝑛, . . . , F(𝑚 ,𝑘),𝑛, . . . , F(𝑚 ,𝐾),𝑛] ,
F̆𝑚,𝑘,𝑛 = [F(𝑚,1),𝑛, . . . , F(𝑚,𝑘−1),𝑛, F(𝑚,𝑘+1),𝑛, . . . , F(𝑚,𝐾),𝑛] , (7)

so that the rate 𝑟(𝑚,𝑘),𝑛 is formed by the difference between two
Shannon transforms as

𝑟(𝑚,𝑘),𝑛 = log I + A(𝑚,𝑘),𝑛A
𝐻
(𝑚,𝑘),𝑛


− log I + B(𝑚,𝑘),𝑛B

𝐻
(𝑚,𝑘),𝑛

 .
(8)

The 𝑁𝑈 × 𝑁𝑈𝐾𝑀 matrix A(𝑚,𝑘),𝑛 is associated with the total
received signal while the𝑁𝑈 ×𝑁𝑈(𝐾𝑀−1)matrix B(𝑚,𝑘),𝑛 is
associated with interference plus noise.

In order to approximate EH[𝑟(𝑚,𝑘),𝑛], we need to find the
asymptotic approximation toEX[log |I+XX𝐻|]. According to
the random matrix theory [21, 22, 40], the ergodic Shannon
transform of XX𝐻 can be asymptotically approximated by
a deterministic function that only depends on the second-
order statistics of X. Therefore, we only need the second-
order statistics ofA(𝑚,𝑘),𝑛 andB(𝑚,𝑘),𝑛 to characterize �̃�(𝑚,𝑘),𝑛 ≈
EH[𝑟(𝑚,𝑘),𝑛].
3.1. Second-Order Statistics of A(𝑚,𝑘),𝑛 and B(𝑚,𝑘),𝑛. We shall
now calculate the 𝑁2𝑈𝐾𝑀 × 𝑁2𝑈𝐾𝑀 covariance matrix of
A(𝑚,𝑘),𝑛 defined as

Σ
A
(𝑚,𝑘),𝑛 = EH [vec {A(𝑚,𝑘),𝑛} vec𝐻 {A(𝑚,𝑘),𝑛}] , (9)

which is associated with the total received signal, and the𝑁2𝑈(𝐾𝑀 − 1) × 𝑁2𝑈(𝐾𝑀 − 1) covariance matrix of B(𝑚,𝑘),𝑛
defined as

Σ
B
(𝑚,𝑘),𝑛 = EH [vec {B(𝑚,𝑘),𝑛} vec𝐻 {B(𝑚,𝑘),𝑛}] , (10)

which is associated with interference plus noise. From the
definition of A(𝑚,𝑘),𝑛 and statistical independence of channel
matrices across BSs, it follows that

Σ
A
(𝑚,𝑘),𝑛 =

[[[[[[[[[[
[

Σ1,(𝑚,𝑘),𝑛 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
0 d ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
... ... Σ𝑚,(𝑚,𝑘),𝑛 ⋅ ⋅ ⋅ ...
... ... ... d

...
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Σ𝑀,(𝑚,𝑘),𝑛

]]]]]]]]]]
]

, (11)

where Σ𝑚 ,(𝑚,𝑘),𝑛 is the 𝑁2𝑈𝐾 × 𝑁2𝑈𝐾 subcovariance matrix
corresponding to BS𝑚 and given by

Σ𝑚 ,(𝑚,𝑘),𝑛

= EH [vec {H𝑚,(𝑚,𝑘),𝑛F𝑚 ,𝑛} vec𝐻 {H𝑚 ,(𝑚,𝑘),𝑛F𝑚 ,𝑛}] . (12)
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Similarly, from the definition of B(𝑚,𝑘),𝑛 and statistical inde-
pendence of channel matrices across BSs, it follows that

Σ
B
(𝑚,𝑘),𝑛 =

[[[[[[[[[[
[

Σ1,(𝑚,𝑘),𝑛 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
0 d ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0
... ... Σ̆𝑚,(𝑚,𝑘),𝑛 ⋅ ⋅ ⋅ ...
... ... ... d

...
0 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ Σ𝑀,(𝑚,𝑘),𝑛

]]]]]]]]]]
]

, (13)

where Σ̆𝑚,(𝑚,𝑘),𝑛 is the𝑁2𝑈(𝐾 − 1) ×𝑁2𝑈(𝐾 − 1) subcovariance
matrix corresponding to BS𝑚 and given by

Σ̆𝑚,(𝑚,𝑘),𝑛

= EH [vec {H𝑚,(𝑚,𝑘),𝑛F̆𝑚,𝑘,𝑛} vec𝐻 {H𝑚,(𝑚,𝑘),𝑛F̆𝑚,𝑘,𝑛}] . (14)

Now, we only need to calculate the subcovariance matrices
Σ𝑚 ,(𝑚,𝑘),𝑛 and Σ̆𝑚,(𝑚,𝑘),𝑛 to completely determine the covari-
ance matrices ΣA(𝑚,𝑘),𝑛 and Σ

B
(𝑚,𝑘),𝑛. It is straightforward to

show that

Σ𝑚 ,(𝑚,𝑘),𝑛 = (F𝑇𝑚 ,𝑛 ⊗ I)Ω𝑚 ,(𝑚,𝑘),𝑛 (F∗𝑚 ,𝑛 ⊗ I) ,
Σ̆𝑚,(𝑚,𝑘),𝑛 = (F̆𝑇𝑚,𝑘,𝑛 ⊗ I)Ω𝑚,(𝑚,𝑘),𝑛 (F̆∗𝑚,𝑘,𝑛 ⊗ I) , (15)

whereΩ𝑚 ,(𝑚,𝑘),𝑛 is defined in (4).
We remark here that, in contrast to the uplink transmis-

sion considered in [20] where each subcovariance matrix is𝑁𝑈𝑁𝐵 × 𝑁𝑈𝑁𝐵, in the downlink transmission each subco-
variancematrix is𝑁2𝑈𝐾×𝑁2𝑈𝐾, so each dimension is approx-
imately 𝐾 times larger. The increased size of the covariance
matrix is due to the fact that the downlink transmitter (BS)
has𝐾 intended receivers (users), while the uplink transmitter
(user) has only one intended receiver (BS). In addition to
this, there are 𝑁 covariance matrix groups in the MIMO-
OFDM system, one for each subcarrier.

The deterministic approximation will depend on the
eigenvalues of ΣA(𝑚,𝑘),𝑛 and Σ

B
(𝑚,𝑘),𝑛, so we shall define two

eigenvalue matrices. Define the 𝑁𝑈 × 𝑁𝑈𝐾𝑀 eigenvalue
matrix ΛA(𝑚,𝑘),𝑛 and 𝑁𝑈 × 𝑁𝑈(𝐾𝑀 − 1) eigenvalue matrix
ΛB(𝑚,𝑘),𝑛, which are formed by stacking the eigenvalues of
ΣA(𝑚,𝑘),𝑛 andΣ

B
(𝑚,𝑘),𝑛 in𝑁𝑈×1 sized columns, respectively. Such

a definition is required to apply the theorems from random
matrix theory. Note that the first dimension of eigenvalue
matrices is the receiver antenna number𝑁𝑈. It is easy to see
that

Λ
A
(𝑚,𝑘),𝑛 = [Λ1,(𝑚,𝑘),𝑛, . . . ,Λ𝑚,(𝑚,𝑘),𝑛, . . . ,Λ𝑀,(𝑚,𝑘),𝑛] ,
Λ
B
(𝑚,𝑘),𝑛 = [Λ1,(𝑚,𝑘),𝑛, . . . , Λ̆𝑚,(𝑚,𝑘),𝑛, . . . ,Λ𝑀,(𝑚,𝑘),𝑛] , (16)

where 𝑁𝑈 × 𝑁𝑈𝐾 eigenvalue matrix Λ𝑚 ,(𝑚,𝑘),𝑛 and 𝑁𝑈 ×𝑁𝑈(𝐾−1) eigenvaluematrix Λ̆𝑚,(𝑚,𝑘),𝑛 are formed by stacking
the eigenvalues of Σ𝑚 ,(𝑚,𝑘),𝑛 and Σ̆𝑚,(𝑚,𝑘),𝑛 in 𝑁𝑈 × 1 sized
columns, respectively.

3.2. Approximation of the Rate Function. In this subsection,
we will derive the approximation to the rate based on the
random matrix theory. We start by reviewing some concepts
from the random matrix theory. For an 𝐼 × 𝐽 random matrix
X, the correlation function is defined as 𝑅X(𝑖, 𝑗; 𝑖, 𝑗) ≜
E[[X]𝑖,𝑗[X]𝑖 ,𝑗]. Define the kernel of the correlation function
by a set of orthonormal eigenfunctions 𝜓𝑘,𝑙(𝑖, 𝑗) ∈ C satis-
fying ∑𝑖 ,𝑗 𝑅X(𝑖, 𝑗; 𝑖, 𝑗)𝜓𝑘,𝑙(𝑖, 𝑗) = 𝜆𝑘,𝑙𝜓𝑘,𝑙(𝑖, 𝑗) where 𝜆𝑘,𝑙 is
the kernel eigenvalue [21]. We say the kernel is factorable if𝜓𝑘,𝑙(𝑖, 𝑗) = 𝑢𝑘(𝑖)V𝑙(𝑗) for some functions 𝑢𝑘(𝑖) and V𝑙(𝑗). Also,
defineΛX ∈ R𝐼×𝐽 as the eigenvaluematrix which is formed by
stacking the eigenvalues of ΣX = E[vec{X}vec𝐻{X}] in 𝐼 × 1
sized columns. MatricesX, ΣX, andΛX can representA(𝑚,𝑘),𝑛,
ΣA(𝑚,𝑘),𝑛, and Λ

A
(𝑚,𝑘),𝑛 (or those of B), respectively.

Proposition 1. Suppose the following technical conditions
hold for the correlation function of X ∈ C𝐼×𝐽: (a) its
kernel is factorable; (b) its eigenvalues multiplied by 𝐼 are
uniformly bounded. Then, based on [29, Theorem 2] and [23,
Theorem 3], the random variable (1/𝐼) log |I + XX𝐻| will
converge almost surely to its deterministic approximation �̃�X
for 𝐽/𝐼 fixed as 𝐼, 𝐽 → ∞. We have

�̃�X ≜ 1𝐼
𝐽∑
𝑗=1

log(1 + 𝐼 [ΛX𝑇u]
𝑗
)

+ 1𝐼
𝐼∑
𝑖=1

log (1 + 𝐽 [ΛXk]
𝑖
) − 𝐽u𝑇ΛXk log 𝑒,

(17)

where ΛX denotes the eigenvalue matrix and u ∈ R𝐼, k ∈ R𝐽

are solutions to the following fixed point equations:

[u]−1𝑖 = 𝐼 (1 + 𝐽 [ΛXk]
𝑖
) , 𝑖 = 1, . . . , 𝐼,

[k]−1𝑗 = 𝐽 (1 + 𝐼 [ΛX𝑇u]
𝑗
) , 𝑗 = 1, . . . , 𝐽. (18)

Now based on this approximation technique and the
second-order statistics of A𝑚 ,(𝑚,𝑘),𝑛 and B𝑚 ,(𝑚,𝑘),𝑛 derived
previously, we can obtain the asymptotic approximation to
the ergodic rate in the following theorem.

Theorem 2. Suppose the following conditions are satisfied for
the correlation functions of A(𝑚,𝑘),𝑛 and B(𝑚,𝑘),𝑛: (a) they have
factorable kernels; (b) their eigenvalues multiplied by 𝑁𝑈 are
uniformly bounded. Then for𝑁𝐵 ≥ 𝑁𝑈 → ∞ we have

𝑟(𝑚,𝑘),𝑛 − �̃�(𝑚,𝑘),𝑛𝑁𝑈 → 0, (19)

in which �̃�(𝑚,𝑘),𝑛 is a deterministic function given by
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�̃�(𝑚,𝑘),𝑛 = −𝑁𝑈𝐾𝑀∑
𝑗=1

log [kA(𝑚,𝑘),𝑛]𝑗

+ 𝑁𝑈(𝐾𝑀−1)∑
𝑗=1

log [kB(𝑚,𝑘),𝑛]𝑗 +
𝑁𝑈∑
𝑖=1

[
[
log

[uB(𝑚,𝑘),𝑛]𝑖[uA
(𝑚,𝑘),𝑛

]
𝑖

+ 𝑁𝑈 log 𝑒 ([uA(𝑚,𝑘),𝑛]𝑖 − [uB(𝑚,𝑘),𝑛]𝑖)]]
− 𝑁𝑈

⋅ log (𝑁𝑈 (𝐾𝑀 − 1)) + 𝑁𝑈𝐾𝑀 log(1 − 1𝐾𝑀) ,

(20)

where uA(𝑚,𝑘),𝑛 ∈ R𝑁𝑈 , kA(𝑚,𝑘),𝑛 ∈ R𝐾𝑀𝑁𝑈 , uB(𝑚,𝑘),𝑛 ∈ R𝑁𝑈 , and
kB(𝑚,𝑘),𝑛 ∈ R(𝐾𝑀−1)𝑁𝑈 are the solutions to the following fixed
point equations:

[uA(𝑚,𝑘),𝑛]−1𝑖 = 𝑁𝑈 (1 + 𝐾𝑀𝑁𝑈 [ΛA(𝑚,𝑘),𝑛kA(𝑚,𝑘),𝑛]𝑖) , (21)

[kA(𝑚,𝑘),𝑛]−1𝑗 = 𝑁𝑈𝐾𝑀(1 + 𝑁𝑈 [ΛA(𝑚,𝑘),𝑛𝑇uA(𝑚,𝑘),𝑛]𝑗) , (22)

[uB(𝑚,𝑘),𝑛]−1𝑖
= 𝑁𝑈 (1 + 𝑁𝑈 (𝐾𝑀 − 1) [ΛB(𝑚,𝑘),𝑛vB(𝑚,𝑘),𝑛]𝑖) ,

[vB(𝑚,𝑘),𝑛]−1𝑗
= 𝑁𝑈 (𝐾𝑀 − 1) (1 + 𝑁𝑈 [ΛB(𝑚,𝑘),𝑛𝑇uB(𝑚,𝑘),𝑛]𝑗) ,

(23)

where 𝑖 and 𝑗 range according to the vector sizes.
Proof. We will apply Proposition 1 to each term in (8). Con-
sider the first term log |I+A(𝑚,𝑘),𝑛A𝐻(𝑚,𝑘),𝑛| in whichA(𝑚,𝑘),𝑛 ∈
C𝑁𝑈×𝑁𝑈𝐾𝑀 must satisfy conditions (a) and (b) of Theorem 2
in accordance with the same conditions in Proposition 1.
Since 𝑁𝑈𝐾𝑀/𝑁𝑈 = 𝐾𝑀, the ratio of dimensions is always
fixed as 𝑁𝐵 ≥ 𝑁𝑈 → ∞. Condition 𝑁𝐵 ≥ 𝑁𝑈 guarantees
that the precoders have full column rank so (2) remains valid.
Now, from Proposition 1, the first term in (8) divided by 𝑁𝑈
is approximated as

�̃�A(𝑚,𝑘),𝑛

≜ 1𝑁𝑈
𝑁𝑈𝐾𝑀∑
𝑗=1

log(1 + 𝑁𝑈 [ΛA(𝑚,𝑘),𝑛𝑇uA(𝑚,𝑘),𝑛]𝑗)

+ 1𝑁𝑈
𝑁𝑈∑
𝑖=1

log (1 + 𝐾𝑀𝑁𝑈 [ΛA(𝑚,𝑘),𝑛kA(𝑚,𝑘),𝑛]𝑖)

− 𝑁𝑈𝐾𝑀uA(𝑚,𝑘),𝑛
𝑇
Λ
A
(𝑚,𝑘),𝑛k

A
(𝑚,𝑘),𝑛 log 𝑒.

(24)

In the first term of approximation �̃�A(𝑚,𝑘),𝑛 , we can express

[ΛA(𝑚,𝑘),𝑛𝑇uA(𝑚,𝑘),𝑛]𝑗 in terms of [kA(𝑚,𝑘),𝑛]𝑗 using (22). In the
second term of approximation �̃�A(𝑚,𝑘),𝑛 , we can express
[ΛA(𝑚,𝑘),𝑛kA(𝑚,𝑘),𝑛]𝑖 in terms of [uA(𝑚,𝑘),𝑛]𝑖 using (21). For the third
term of approximation �̃�A(𝑚,𝑘),𝑛 , we can write

uA(𝑚,𝑘),𝑛
𝑇
Λ
A
(𝑚,𝑘),𝑛k

A
(𝑚,𝑘),𝑛

= ∑
𝑖

∑
𝑗

[uA(𝑚,𝑘),𝑛]𝑖 [ΛA(𝑚,𝑘),𝑛]𝑖,𝑗 [kA(𝑚,𝑘),𝑛]𝑗

= ∑
𝑖

[uA(𝑚,𝑘),𝑛]𝑖∑
𝑗

[ΛA(𝑚,𝑘),𝑛]𝑖,𝑗 [kA(𝑚,𝑘),𝑛]𝑗

= ∑
𝑖

[uA(𝑚,𝑘),𝑛]𝑖 [ΛA(𝑚,𝑘),𝑛kA(𝑚,𝑘),𝑛]𝑖

(25)

and express [ΛA(𝑚,𝑘),𝑛kA(𝑚,𝑘),𝑛]𝑖 in terms of [uA(𝑚,𝑘),𝑛]𝑖 using (21).
So all the terms in �̃�A(𝑚,𝑘),𝑛 are expressed in terms of [uA(𝑚,𝑘),𝑛]𝑖,[kA(𝑚,𝑘),𝑛]𝑗. In a similar manner, �̃�B(𝑚,𝑘),𝑛 can be expressed
in terms of [uB(𝑚,𝑘),𝑛]𝑖, [kB(𝑚,𝑘),𝑛]𝑗. Forming (1/𝑁𝑈)�̃�(𝑚,𝑘),𝑛 =
�̃�A(𝑚,𝑘),𝑛 − �̃�B(𝑚,𝑘),𝑛 along with some mathematical manipula-
tions completes the proof.

Some remarks are in order. It is shown in [23] that
many channel models including the unitary-independent-
unitary (UIU) model, Kronecker model, and independent
nonidentically distributed (IND)model satisfy conditions (a)
and (b) ofTheorem 2.While the approximation is guaranteed
to converge as 𝑁𝐵 ≥ 𝑁𝑈 → ∞, it is accurate even for
very small number of antennas (e.g., 𝑁𝑈 = 3, 𝑁𝐵 = 3)
as will be shown in the simulation section. The existence of
positive solutions to the fixed point equations inTheorem 2 is
proved in [21]. Computationally, the equations can be solved
numerically by iteratively substituting the value on the right-
hand side into the left-hand side.The convergence result sug-
gests that the ergodic rateEH[𝑟(𝑚,𝑘),𝑛] can be approximated by�̃�(𝑚,𝑘),𝑛.
4. Weighted Sum Rate Maximization

In this section, we develop an algorithm to obtain a sub-
optimal solution to problem (P2). We will often need to
differentiate one matrix with respect to another matrix;
therefore, to facilitate calculations, the following definition is
presented [41].

Definition 3. Let f(x) be a function mapping R𝑛 → R𝑚,
define its derivativeDxf as the𝑚 × 𝑛matrix with elements

[Dxf]𝑖,𝑗 = 𝜕f𝑖 (x)𝜕x𝑗 . (26)
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Furthermore, let F(X) be a function mappingR𝑚×𝑛 → R𝑝×𝑞;
define its derivativeDXF(X) as the 𝑝𝑞 × 𝑚𝑛matrix

DXF (X) = Dvec{X}vec {F (X)} . (27)

The most important property of this definition is that
the chain rule holds, which enables the differentiation of
complicated functions. Adopting this definition, we can now
seek to solve the optimization problem.

Problem (P2) is nonconvex, so a global maximum is
generally hard to obtain. Fortunately, the KKT conditions still
serve as the necessary conditions for local optima, so we seek
a suboptimal solution that satisfies the KKT conditions. To
this end, we define

f(𝑚,𝑘),𝑛 = [
[
vec {Re (F(𝑚,𝑘),𝑛)}
vec {Im (F(𝑚,𝑘),𝑛)}

]
]
∈ R
2𝑁𝑈𝑁𝐵×1, (28)

which is the complex-real isomorphism of F(𝑚,𝑘),𝑛. Problem(P2) then becomes

max
F̃

𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝑤(𝑚,𝑘) 𝑁∑
𝑛=1

�̃�(𝑚,𝑘),𝑛
s.t. 𝐾∑

𝑘=1

𝑁∑
𝑛=1

f𝑇(𝑚,𝑘),𝑛f(𝑚,𝑘),𝑛 = 𝑃𝑚, ∀𝑚,
(29)

where F̃ is a set that has complex-real isomorphism with
respect toF.

To further simplify the problem, we can reformulate it
as an unconstrained optimization. To do so, similar to [42],
we make a change of variables from f(𝑚,𝑘),𝑛 to the spherical
coordinates 𝜙(𝑚,𝑘),𝑛 that belongs to R2𝑁𝐵𝑁𝑈 if (𝑘, 𝑛) ̸= (𝐾,𝑁)
and to R2𝑁𝐵𝑁𝑈−1 if (𝑘, 𝑛) = (𝐾,𝑁). The transformation is
described by

[f(𝑚,𝑘),𝑛]𝑖 =
{{{{{{{

√𝑃𝑚 cos [𝜙(𝑚,𝑘),𝑛]𝑖 ∏
(𝑘 ,𝑛 ,𝑖)≺(𝑘,𝑛,𝑖)

sin [𝜙(𝑚,𝑘),𝑛]𝑖 , (𝑘, 𝑛, 𝑖) ̸= (𝐾,𝑁, 2𝑁𝐵𝑁𝑈)
√𝑃𝑚 ∏
(𝑘 ,𝑛 ,𝑖)≺(𝐾,𝑁,2𝑁𝐵𝑁𝑈)

sin [𝜙(𝑚,𝑘),𝑛]𝑖 , (𝑘, 𝑛, 𝑖) = (𝐾,𝑁, 2𝑁𝐵𝑁𝑈) , (30)

where ≺ denotes the lexicographical order of vectors. Under
this parametrization, the power constraint is automatically
satisfied since the variables are on the surface of a hypersphere
with radius√𝑃𝑚.

Since the local optima occur at the interior of the domain
of angle parameters, the KKT condition for problem (P2) is
simplified to
𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝑤(𝑚,𝑘) 𝑁∑
𝑛=1

D𝜃
𝑚
�̃�(𝑚,𝑘),𝑛 = 0, ∀𝑚,

𝜃𝑚

≜ [𝜙𝑇(𝑚 ,1),1, . . . ,𝜙𝑇(𝑚 ,1),𝑁, . . . ,𝜙𝑇(𝑚 ,𝐾),1, . . . ,𝜙𝑇(𝑚 ,𝐾),𝑁]𝑇 ,
(31)

where 𝜃𝑚 ∈ R(2𝑁𝑈𝑁𝐵𝐾𝑁−1)×1 holds all the angle parameters
corresponding to BS 𝑚. The above expression simply states
that the gradient vanishes at any optimum point. So finding
a local optimum solution is equivalent to pursuing a set
of points 𝜃opt

𝑚
, ∀𝑚 at which the gradient vanishes. In

practice, the equation for setting the gradient to zero is highly
nonlinear and it is impossible to solve it directly. However,
starting from any initial point for 𝜃𝑚 , we can use a simple
gradient search method to increase the objective function
after each iteration and gradually approach a point where
the gradient is zero. In order to do so, we need to derive the1×(2𝑁𝑈𝑁𝐵𝐾𝑁−1) vectorD𝜃

𝑚
�̃�(𝑚,𝑘),𝑛, which is the transpose

of the gradient vector.The remainingmaterials of this section
will thus be devoted to the derivation ofD𝜃

𝑚
�̃�(𝑚,𝑘),𝑛.

4.1. Derivation of D𝜃
𝑚
�̃�(𝑚,𝑘),𝑛. It immediately follows by the

chain rule that

D𝜃
𝑚
�̃�(𝑚,𝑘),𝑛 = Df

𝑚,𝑛

�̃�(𝑚,𝑘),𝑛D𝜃
𝑚
f𝑚 ,𝑛, (32)

f𝑚 ,𝑛 = [f𝑇(𝑚 ,1),𝑛, f𝑇(𝑚 ,2),𝑛, . . . , f𝑇(𝑚 ,𝐾),𝑛]𝑇 . (33)

Now we need to find Df
𝑚,𝑛

�̃�(𝑚,𝑘),𝑛 and D𝜃
𝑚
f𝑚 ,𝑛 in order to

form the chain rule and obtain (33). We shall find derivatives
with respect to the subvectors of f𝑚 ,𝑛, that is, with respect
to vectors f(𝑚 ,𝑘),𝑛. The components of D𝜃

𝑚
f(𝑚 ,𝑘),𝑛 can be

obtained by differentiating (30) which yields the following:

D𝜃
𝑚
[f(𝑚 ,𝑘),𝑛]𝑖 = [f(𝑚 ,𝑘),𝑛]𝑖

×

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

[[[[[[[[[[[
[

cot [𝜙(𝑚 ,1),1]1...
cot [𝜙(𝑚 ,𝑘),𝑛]𝑖−1− tan [𝜙(𝑚 ,𝑘),𝑛]𝑖

0

]]]]]]]]]]]
]

𝑇

, (𝑘, 𝑛, 𝑖) ̸= (𝐾,𝑁, 2𝑁2𝐵)

[[[[[[[[
[

cot [𝜙(𝑚 ,1),1]1...
cot [𝜙(𝑚 ,𝑘),𝑛]𝑖−2
cot [𝜙(𝑚 ,𝑘),𝑛]𝑖−1

]]]]]]]]
]

𝑇

, o.w.

(34)

The components ofDf
(𝑚,𝑘),𝑛

�̃�(𝑚,𝑘),𝑛 can be found through the
complex-real isomorphism as
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Df
(𝑚,𝑘),𝑛

�̃�(𝑚,𝑘),𝑛 = 2[
[

Re𝑇 {DF
(𝑚,𝑘),𝑛

�̃�(𝑚,𝑘),𝑛}
−Im𝑇 {DF

(𝑚,𝑘),𝑛
�̃�(𝑚,𝑘),𝑛}

]
]
𝑇

. (35)

Substituting (34) and (35) in (33) completes the derivation
provided thatDF

(𝑚,𝑘),𝑛
�̃�(𝑚,𝑘),𝑛 is available.

Calculation ofDF
(𝑚,𝑘),𝑛

�̃�(𝑚,𝑘),𝑛 is more complicated since,
according to Theorem 2, �̃�(𝑚,𝑘),𝑛 is a function of uA(𝑚,𝑘),𝑛,
kA(𝑚,𝑘),𝑛, u

B
(𝑚,𝑘),𝑛, and kB(𝑚,𝑘),𝑛, which are in turn functions of

ΛA(𝑚,𝑘),𝑛, Λ
B
(𝑚,𝑘),𝑛. The chain rule gives

DF
(𝑚,𝑘),𝑛

�̃�(𝑚,𝑘),𝑛
= DuA

(𝑚,𝑘),𝑛
�̃�(𝑚,𝑘),𝑛DΛA(𝑚,𝑘),𝑛uA(𝑚,𝑘),𝑛DF

(𝑚,𝑘),𝑛
Λ
A
(𝑚,𝑘),𝑛

+DkA
(𝑚,𝑘),𝑛

�̃�(𝑚,𝑘),𝑛DΛA(𝑚,𝑘),𝑛kA(𝑚,𝑘),𝑛DF
(𝑚,𝑘),𝑛
Λ
A
(𝑚,𝑘),𝑛

+DuB
(𝑚,𝑘),𝑛

�̃�(𝑚,𝑘),𝑛DΛB(𝑚,𝑘),𝑛uB(𝑚,𝑘),𝑛DF
(𝑚,𝑘),𝑛
Λ
B
(𝑚,𝑘),𝑛

+DkB
(𝑚,𝑘),𝑛

�̃�(𝑚,𝑘),𝑛DΛB(𝑚,𝑘),𝑛kB(𝑚,𝑘),𝑛DF
(𝑚,𝑘),𝑛
Λ
B
(𝑚,𝑘),𝑛.

(36)

There are three derivatives involved in each term of (36). In
what follows, we shall calculate each of them.

4.1.1. First Chain of (36). The first chains can be obtained by
differentiating �̃�(𝑚,𝑘),𝑛, as given inTheorem 2, which yields

D[uA
(𝑚,𝑘),𝑛
]𝑖
�̃�(𝑚,𝑘),𝑛 = − ([uA(𝑚,𝑘),𝑛]−1𝑖 − 𝑁𝑈) log 𝑒,

D[uB
(𝑚,𝑘),𝑛
]𝑖
�̃�(𝑚,𝑘),𝑛 = ([uB(𝑚,𝑘),𝑛]−1𝑖 − 𝑁𝑈) log 𝑒,

D[kA
(𝑚,𝑘),𝑛
]𝑖
�̃�(𝑚,𝑘),𝑛 = − [kA(𝑚,𝑘),𝑛]−1𝑖 log 𝑒,

D[kB
(𝑚,𝑘),𝑛
]𝑖
�̃�(𝑚,𝑘),𝑛 = [kB(𝑚,𝑘),𝑛]−1𝑖 log 𝑒.

(37)

4.1.2. Second Chain of (36). The second chains can be
obtained by differentiating the fixed point equations given in
Theorem 2. It can be shown that

[
[
D[ΛA(𝑚,𝑘),𝑛]ℎ,𝑙

uA(𝑚,𝑘),𝑛
D[ΛA(𝑚,𝑘),𝑛]ℎ,𝑙

kA(𝑚,𝑘),𝑛
]
]
= −𝐾𝑁𝑈𝑀

× [
[

UA
(𝑚,𝑘),𝑛 𝐾𝑁2𝑈𝑀ΛA(𝑚,𝑘),𝑛

𝐾𝑁2𝑈𝑀ΛA(𝑚,𝑘),𝑛𝑇 VA
(𝑚,𝑘),𝑛

]
]
−1

⋅ [
[

[vA(𝑚,𝑘),𝑛]𝑙 e𝑁𝑈ℎ[uA(𝑚,𝑘),𝑛]ℎ e𝐾𝑁𝐵𝑀𝑙
]
]
,

[
[
D[ΛB(𝑚,𝑘),𝑛]ℎ,𝑙

uB(𝑚,𝑘),𝑛
D[ΛB(𝑚,𝑘),𝑛]ℎ,𝑙

vB(𝑚,𝑘),𝑛
]
]
= − (𝐾𝑀 − 1)𝑁𝑈

× [
[

UB
(𝑚,𝑘),𝑛 (𝐾𝑀 − 1)𝑁2𝑈ΛB(𝑚,𝑘),𝑛

(𝐾𝑀 − 1)𝑁2𝑈ΛB(𝑚,𝑘),𝑛𝑇 VB
(𝑚,𝑘),𝑛

]
]
−1

× [
[

[vB(𝑚,𝑘),𝑛]𝑙 e𝑁𝑈ℎ[uB(𝑚,𝑘),𝑛]ℎ e(𝐾𝑀−1)𝑁𝐵𝑙

]
]
,

(38)

where e𝑃𝑙 denotes the 𝑙th standard basis vector in R𝑃 and

UA
(𝑚,𝑘),𝑛 = diag {[uA(𝑚,𝑘),𝑛]−21 , . . . , [uA(𝑚,𝑘),𝑛]−2𝑁𝑈} ,

VA
(𝑚,𝑘),𝑛 = diag {[kA(𝑚,𝑘),𝑛]−21 , . . . , [kA(𝑚,𝑘),𝑛]−2𝐾𝑁𝑈𝑀} ,

UB
(𝑚,𝑘),𝑛 = diag {[uB(𝑚,𝑘),𝑛]−21 , . . . , [uB(𝑚,𝑘),𝑛]−2𝑁𝑈} ,

VB
(𝑚,𝑘),𝑛 = diag {[kB(𝑚,𝑘),𝑛]−21 , . . . , [kB(𝑚,𝑘),𝑛]−2(𝐾𝑀−1)𝑁𝑈} .

(39)

4.1.3. Third Chain of (36). Using the chain rule together with
(16), we have

DF
(𝑚,𝑘),𝑛
Λ
A
(𝑚,𝑘),𝑛

= [[
[

0
DΣ
𝑚,(𝑚,𝑘),𝑛
Λ𝑚 ,(𝑚,𝑘),𝑛DF

(𝑚,𝑘),𝑛
Σ𝑚 ,(𝑚,𝑘),𝑛

0

]]
]
,

DF
(𝑚,𝑘),𝑛
Λ
B
(𝑚,𝑘),𝑛

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{

[[[[
[

0

DΣ
𝑚,(𝑚,𝑘),𝑛
Λ𝑚 ,(𝑚,𝑘),𝑛DF

(𝑚,𝑘),𝑛
Σ𝑚 ,(𝑚,𝑘),𝑛

0

]]]]
]
, 𝑚 ̸= 𝑚,

[[[[
[

0

D
Σ̆𝑚,(𝑚,𝑘),𝑛
Λ̆𝑚,(𝑚,𝑘),𝑛DF

(𝑚,𝑘),𝑛
Σ̆𝑚,(𝑚,𝑘),𝑛

0

]]]]
]
, 𝑚 = 𝑚.

(40)

We now need to calculate the terms in the above formulas.
Note that the nonzero terms in the abovematrices are equal to
DF
(𝑚,𝑘),𝑛
Λ𝑚 ,(𝑚,𝑘),𝑛 and DF

(𝑚,𝑘),𝑛
Λ̆𝑚,(𝑚,𝑘),𝑛 expressed through

the chain rule.
Based on the results in [41], the derivative of the eigen-

values with respect to the matrix can be explicitly written as
a function of the eigenvectors, so we obtain

DΣ
𝑚,(𝑚,𝑘),𝑛
Λ𝑚 ,(𝑚,𝑘),𝑛

=
[[[[[[
[

vec𝑇 {𝜇1𝑚 ,(𝑚,𝑘),𝑛∗𝜇1𝑚 ,(𝑚,𝑘),𝑛𝑇}...
vec𝑇 {𝜇𝐾𝑁2𝑈

𝑚 ,(𝑚,𝑘),𝑛

∗

𝜇
𝐾𝑁2𝑈
𝑚 ,(𝑚,𝑘),𝑛

𝑇}

]]]]]]
]
,
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D
Σ̆𝑚,(𝑚,𝑘),𝑛
Λ̆𝑚,(𝑚,𝑘),𝑛

=
[[[[[[
[

vec𝑇 {�̆�1𝑚,(𝑚,𝑘),𝑛∗�̆�1𝑚,(𝑚,𝑘),𝑛𝑇}...
vec𝑇 {�̆�(𝐾−1)𝑁2𝑈

𝑚,(𝑚,𝑘),𝑛

∗

�̆�
(𝐾−1)𝑁2𝑈
𝑚,(𝑚,𝑘),𝑛

𝑇}

]]]]]]
]
,

(41)

where 𝜇𝑖𝑚 ,(𝑚,𝑘),𝑛 and �̆�
𝑖
𝑚,(𝑚,𝑘),𝑛 denote the 𝑖th eigenvector of

Σ𝑚 ,(𝑚,𝑘),𝑛 and Σ̆𝑚,(𝑚,𝑘),𝑛, respectively.
Finally, differentiating (15) and using the results in

[41], we obtain the formulas for DF
(𝑚,𝑘),𝑛
Σ𝑚 ,(𝑚,𝑘),𝑛 and

DF
(𝑚,𝑘),𝑛
Σ̆𝑚,(𝑚,𝑘),𝑛 given by

DF
(𝑚,𝑘),𝑛
Σ𝑚 ,(𝑚,𝑘),𝑛 = {[(F𝐻𝑚 ,𝑛 ⊗ I𝑁𝑈) (Ω1/2𝑚 ,(𝑚,𝑘),𝑛)∗]

⊗ I𝐾𝑁2
𝑈
} × K𝑁𝑈𝑁𝐵,𝐾𝑁2𝑈 {e𝐾𝑘 ⊗ [(Ω𝑇/2

𝑚 ,(𝑚,𝑘),𝑛
⊗ I𝑁2

𝑈
)

⋅ (I𝑁𝐵 ⊗ K𝑁𝑈,𝑁𝑈 ⊗ I𝑁𝑈) (I𝑁𝑈𝑁𝐵 ⊗ vec {I𝑁𝑈})
⋅ K𝑁𝐵,𝑁𝑈]} ,

DF
(𝑚,𝑘),𝑛
Σ̆𝑚,(𝑚,𝑘),𝑛 = {[(F̆𝐻𝑚,𝑘 ,𝑛 ⊗ I𝑁𝑈) (Ω1/2𝑚,(𝑚,𝑘),𝑛)∗]

⊗ I(𝐾−1)𝑁2
𝑈
} × K𝑁𝑈𝑁𝐵,(𝐾−1)𝑁2𝑈 {u𝑘,𝑘

⊗ [(Ω𝑇/2𝑚,(𝑚,𝑘),𝑛 ⊗ I𝑁2
𝑈
) (I𝑁𝐵 ⊗ K𝑁𝑈,𝑁𝑈 ⊗ I𝑁𝑈)

⋅ (I𝑁𝑈𝑁𝐵 ⊗ vec {I𝑁𝑈})K𝑁𝐵,𝑁𝑈]} ,

(42)

in which K𝑘,𝑙 is the commutation matrix defined in [41]
satisfying K𝑘,𝑙vec{X} = vec{X𝑇} for every matrix X ∈ C𝑘×𝑙,
and

u𝑘,𝑘 =
{{{{{{{{{

e𝐾−1𝑘 𝑘 < 𝑘,
e𝐾−1𝑘−1 𝑘 > 𝑘,
0𝐾−1 𝑘 = 𝑘.

(43)

With all the chains derived, (36) is completely characterized
which in turn enables an explicit expression for D𝜃

𝑚
�̃�(𝑚,𝑘),𝑛

given by (33).

4.2. Local Optimum Solution. With the gradient D𝜃
𝑚
�̃�(𝑚,𝑘),𝑛

computed, a gradient search method can be applied. We now
propose Algorithm 1 to find a local optimum solution for
problem (P2).

Algorithm 1 is not limited to multicell networks with
partial cooperation, sowith smallmodifications it can be used
for precoder design based on statistical CSI for networked
MIMO systems. In networked MIMO, in addition to the
channel statistics, it is assumed that each BS has all the
transmit data, so the whole system can be viewed as a MIMO
super-cell with statistical CSI at the transmitter.

5. MIMO-OFDM Kronecker Channel Model

While the results obtained so far are valid for general
correlation channel models, in this section, we will reduce
the results to a more compact form with less computational
complexity by considering the Kronecker channel model.
The Kronecker model arises in practice when the immedi-
ate surrounding dominates the spatial correlation and the
intermediate scattering clusters exist in a narrow angular
range seen from the antennas [34, 39]. We shall start by
describing theMIMO-OFDM channel and expressing it with
the Kronecker structure.

5.1. Statistical Representation. A wideband MIMO channel is
characterized by 𝐿 channel taps H̃0, . . . , H̃𝐿−1 ∈ C𝐼×𝐽. The
channel matrix on the 𝑛th subcarrier is then given by H𝑛 =∑𝐿−1𝑙=0 H̃𝑙𝑒−𝑗2𝜋𝑛𝑙/𝑁 ∈ C𝐼×𝐽. Now the correlation among channel
taps is given by the tap correlation matrix Υ ∈ C𝐿×𝐿 that is
defined as [Υ]𝑙,𝑘 ≜ E{[H̃𝑙]𝑖,𝑗[H̃𝑘]∗𝑖 ,𝑗}, ∀𝑖, 𝑗, 𝑖, 𝑗. On the other
hand, the Kronecker model assumes that the correlation of
transmitter side and the receiver side is separable, so for each
channel tap H̃𝑙, we have E{[H̃𝑙]𝑖,𝑗[H̃𝑙]∗𝑖 ,𝑗} = [R]𝑖,𝑖[T]𝑗,𝑗
where R ∈ C𝐼×𝐼 and T ∈ C𝐽×𝐽 are receiver and transmitter
correlation matrices, respectively. Based on the above defini-
tions, it is easy to show that the channel correlationmatrix on
subcarrier 𝑛 is given by

Ω𝑛 = E {vec {H𝑛} vec𝐻 {H𝑛}} = 𝜔Υ𝑛 (T ⊗ R) ∈ C
𝐼𝐽×𝐼𝐽,

𝜔Υ𝑛 ≜ w𝐻𝑛 Υw𝑛,
w𝑛 = [𝑒−𝑗2𝜋𝑛(0)/𝑁, . . . , 𝑒−𝑗2𝜋𝑛(𝐿−1)/𝑁]𝑇 .

(44)

Therefore, the channel correlation matrixΩ𝑛 is characterized
by the Kronecker product of transmitter and receiver corre-
lation matrices T and R, multiplied by the quadratic form𝜔Υ𝑛 which depends on the tap correlation matrix and the 𝑛th
Fourier vector. Finally, the following statistical representation
can be considered for the channel:

H𝑛 = R1/2H𝑤 [(Υ1/2w𝑛) ⊗ T1/2] , (45)

whereH𝑤 ∈ C𝐼×𝐽𝐿 is a white random matrix whose elements
are uncorrelated with zero mean and unit variance. Through
the properties of the Kronecker product, the above statistical
representation yields Ω𝑛 = 𝜔Υ𝑛 (T ⊗ R). We shall use (45) to
describe the MIMO-OFDM Kronecker channel model.

If the channel taps are uncorrelated, Υ is diagonal and𝜔Υ𝑛 becomes independent of 𝑛; hence, the channel correlation
function Ω𝑛 is the same over all subcarriers. However,
whenever the channel taps are correlated, Υ is not diagonal
and channel statistics are different on each subcarrier. Since
the precoders depend on the channel statistics, when there
is tap correlation, the MIMO-OFDM precoding matrices are
frequency dependent which limits the system performance
[17, 31–34]. But when there is no tap correlation, precoders
are the same across all frequencies. We shall study the effect
of tap correlation on the system sum rate in the simulation
results section.
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(1) Initialize:
initialize 𝜃𝑚 (0), ∀𝑚 and 𝑡 ← 0;

(2) while stopping criterion not met do
(3) compute F(𝑚 ,𝑘),𝑛, ∀𝑚, 𝑘, 𝑛 using (28), (30);
(4) solve for uA

(𝑚,𝑘),𝑛, k
A
(𝑚,𝑘),𝑛, u

B
(𝑚,𝑘),𝑛, k

B
(𝑚,𝑘),𝑛, ∀𝑚, 𝑘, 𝑛, usingTheorem 2;

(5) computeD
𝜃
𝑚
�̃�(𝑚,𝑘),𝑛, ∀𝑚,𝑚, 𝑘, 𝑛 using (33);

(6) 𝜃𝑚 (𝑡 + 1) ← 𝜃𝑚 (𝑡) + 𝛼(𝑡)∑𝑚,𝑘,𝑛 𝑤(𝑚,𝑘)D𝑇𝜃
𝑚
�̃�(𝑚,𝑘),𝑛, ∀𝑚 and 𝑡 ← 𝑡 + 1;

(7) end while
(8) return F(𝑚 ,𝑘),𝑛, ∀𝑚;

Algorithm 1: Gradient search solution to problem (P2).

5.2. Eigendecomposition under Kronecker Model. Based on
(45), the downlink channel matrix between BS 𝑚 and user(𝑚, 𝑘) can be expressed as

H𝑚 ,(𝑚,𝑘),𝑛 = R1/2
𝑚 ,(𝑚,𝑘)

H𝑤 [(Υ1/2𝑚 ,(𝑚,𝑘)w𝑛) ⊗ T1/2
𝑚,(𝑚,𝑘)

] , (46)

where R𝑚 ,(𝑚,𝑘) ∈ C𝑁𝑈×𝑁𝑈 , T𝑚 ,(𝑚,𝑘) ∈ C𝑁𝐵×𝑁𝐵 , and Υ𝑚 ,(𝑚,𝑘) ∈
C𝐿×𝐿 are the corresponding receiver, transmitter, and tap
correlation matrices, respectively, and H𝑤 ∈ C𝑁𝑈×𝑁𝐵𝐿 is a
white random matrix whose elements are uncorrelated with
zeromean and unit variance. Obviously, we haveΩ𝑚 ,(𝑚,𝑘),𝑛 =𝜔Υ𝑚,(𝑚,𝑘)𝑛 (T𝑚 ,(𝑚,𝑘) ⊗ R𝑚 ,(𝑚,𝑘)) that along with (15) yields

Σ𝑚 ,(𝑚,𝑘),𝑛 = 𝜔Υ𝑚,(𝑚,𝑘)𝑛 (F𝑇𝑚 ,𝑛T𝑚,(𝑚,𝑘)F∗𝑚 ,𝑛) ⊗ R𝑚 ,(𝑚,𝑘),
Σ̆𝑚,(𝑚,𝑘),𝑛 = 𝜔Υ𝑚,(𝑚,𝑘)𝑛 (F̆𝑇𝑚,𝑘,𝑛T𝑚,(𝑚,𝑘)F̆∗𝑚,𝑘,𝑛) ⊗ R𝑚,(𝑚,𝑘).

(47)

Observe that the above subcovariance matrices decompose
into a separated form, so their eigenvalue matrices admit the
following decomposition:

Λ𝑚 ,(𝑚,𝑘),𝑛 = 𝜔Υ𝑚,(𝑚,𝑘)𝑛 𝜆
R
𝑚 ,(𝑚,𝑘)𝜆

T
𝑚 ,(𝑚,𝑘),𝑛

𝑇,
Λ̆𝑚,(𝑚,𝑘),𝑛 = 𝜔Υ𝑚,(𝑚,𝑘)𝑛 𝜆

R
𝑚,(𝑚,𝑘)𝜆

T̆
𝑚,(𝑚,𝑘),𝑛

𝑇,
(48)

in which the vector 𝜆R𝑚 ,(𝑚,𝑘) ∈ C𝑁𝑈×1 holds the eigenvalues of
R𝑚 ,(𝑚,𝑘), and the vectors 𝜆T𝑚 ,(𝑚,𝑘),𝑛 ∈ C𝐾𝑁𝑈×1 and 𝜆T̆𝑚,(𝑚,𝑘),𝑛 ∈
C(𝐾−1)𝑁𝑈×1 hold the eigenvalues of F𝑇𝑚 ,𝑛T𝑚,(𝑚,𝑘)F

∗

𝑚 ,𝑛 and
F̆
𝑇

𝑚,𝑘,𝑛T𝑚,(𝑚,𝑘)F̆
∗

𝑚,𝑘,𝑛, respectively. Now the eigenvaluematrices
ΛA𝑚 ,(𝑚,𝑘) andΛ

B
𝑚,(𝑚,𝑘) can then be found by inserting (48) into

(16).
Computationally, we no longer need to compute the

eigenvalues of very large matrices Σ𝑚 ,(𝑚,𝑘),𝑛 ∈ C𝐾𝑁
2
𝑈×𝐾𝑁

2
𝑈

and Σ̆𝑚,(𝑚,𝑘),𝑛 ∈ C(𝐾−1)𝑁
2
𝑈×(𝐾−1)𝑁

2
𝑈 , but instead, we need only

compute the eigenvalues of the lower dimensional matrices
R𝑚 ,(𝑚,𝑘) ∈ C𝑁𝑈×𝑁𝑈 , F𝑇𝑚 ,𝑛T𝑚,(𝑚,𝑘)F

∗

𝑚 ,𝑛 ∈ C𝐾𝑁𝑈×𝐾𝑁𝑈 , and
F̆
𝑇

𝑚,𝑘,𝑛T𝑚,(𝑚,𝑘)F̆
∗

𝑚,𝑘,𝑛 ∈ C(𝐾−1)𝑁𝑈×(𝐾−1)𝑁𝑈 . Using the above ei-
gendecomposition, the computational complexity is reduced
from O(𝐾3𝑁6𝑈) to O(𝐾3𝑁3𝑈).

5.3. Derivation of D𝜃
𝑚
�̃�(𝑚,𝑘),𝑛 under Kronecker Model. The

procedure given in Section 4.1 can be applied here with
great simplifications forDF

(𝑚,𝑘),𝑛
ΛA(𝑚,𝑘),𝑛 andDF

(𝑚,𝑘),𝑛
ΛB(𝑚,𝑘),𝑛

which constitute the third chain of (36) computed in
Section 4.1.3. Note that the third chain was the most compli-
cated component of the derivative. Considering (16), it suf-
fices to find DF

(𝑚,𝑘),𝑛
Λ𝑚 ,(𝑚,𝑘),𝑛 and DF

(𝑚,𝑘),𝑛
Λ̆𝑚,(𝑚,𝑘),𝑛. It can

be shown from (48) that

DF
(𝑚,𝑘),𝑛
Λ𝑚 ,(𝑚,𝑘),𝑛

= 𝜔Υ𝑚,(𝑚,𝑘)𝑛 (I𝐾𝑁𝑈 ⊗ 𝜆R𝑚 ,(𝑚,𝑘))

×
[[[[[[
[

vec𝑇 {𝜇1𝑚 ,(𝑚,𝑘),𝑛𝜇1𝑚 ,(𝑚,𝑘),𝑛𝑇}...
vec𝑇 {𝜇𝐾𝑁𝑈

𝑚 ,(𝑚,𝑘),𝑛
𝜇
𝐾𝑁𝑈
𝑚 ,(𝑚,𝑘),𝑛

𝑇}

]]]]]]
]

× (F𝐻𝑚 ,𝑛T1/2𝑚,(𝑚,𝑘) ⊗ I𝐾𝑁𝑈)
× K𝑁𝐵,𝐾𝑁𝑈 (e𝐾𝑘 ⊗ I𝑁𝑈 ⊗ T1/2

𝑚,(𝑚,𝑘)
) ,

DF
(𝑚,𝑘),𝑛
Λ̆𝑚,(𝑚,𝑘),𝑛

= 𝜔Υ𝑚,(𝑚,𝑘)𝑛 (I𝐾𝑁𝑈 ⊗ 𝜆R𝑚,(𝑚,𝑘))

×
[[[[[[
[

vec𝑇 {�̆�1𝑚,(𝑚,𝑘),𝑛�̆�1𝑚,(𝑚,𝑘),𝑛𝑇}...
vec𝑇 {�̆�(𝐾−1)𝑁𝑈

𝑚,(𝑚,𝑘),𝑛
�̆�
(𝐾−1)𝑁𝑈
𝑚,(𝑚,𝑘),𝑛

𝑇}

]]]]]]
]

× (F̆𝐻𝑚,𝑛T1/2𝑚,(𝑚,𝑘) ⊗ I𝐾𝑁𝑈)
× K𝑁𝐵,(𝐾−1)𝑁𝑈 (u𝑘,𝑘 ⊗ I𝑁𝑈 ⊗ T1/2𝑚,(𝑚,𝑘)) ,

(49)

where 𝜇𝑖𝑚 ,(𝑚,𝑘),𝑛 and �̆�
𝑖
𝑚,(𝑚,𝑘),𝑛 denote the 𝑖th eigenvector of

F𝑇𝑚 ,𝑛T𝑚 ,(𝑚,𝑘)F
∗

𝑚 ,𝑛 and F̆
𝑇

𝑚,𝑘,𝑛T𝑚,(𝑚,𝑘)F̆
∗

𝑚,𝑘,𝑛, respectively, and
u𝑘,𝑘 was defined in (43). Using the above equations, the
computational complexity is reduced from O(𝐾𝑁3𝑈𝑁𝐵) to
O(𝐾𝑁𝑈𝑁𝐵).
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6. Intercarrier Interference

In this section, we allow ICI among OFDM subcarriers. The
case without ICI is then a special case of this scenario.The ICI
occurs when there is carrier frequency offset due to synchro-
nization errors andDoppler shifts [1, 38, 43].This leads to loss
of orthogonality among subcarriers which introduces more
interference to the system. To accommodate our method to
this situation, we will approximate the rate under ICI and
then extend the proposed algorithm to facilitate the precoder
design with statistical CSI.

6.1. SystemModel and Problem Formulation under ICI. When
there is ICI, the received signal at user (𝑚, 𝑘) on subcarrier 𝑛
can be modelled as

y(𝑚,𝑘),𝑛 = ∑
𝑚 ,𝑘 ,𝑛

√𝜌𝑛 ,𝑛H𝑚 ,(𝑚,𝑘),𝑛F(𝑚 ,𝑘),𝑛x(𝑚 ,𝑘),𝑛
+ z(𝑚,𝑘),𝑛,

(50)

where |𝜌𝑛 ,𝑛| < 1 models the power leaked from subcarrier𝑛 to subcarrier 𝑛 due to the ICI. Following [1], we model the
ICI through the normalized frequency offset denoted by 0 <𝜖 < 1, which is the ratio of the actual frequency offset to the
intercarrier spacing. It is shown in [1] that 𝜌𝑛 ,𝑛 relates to the𝜖 by

𝜌𝑛 ,𝑛 = ( sin (𝜋 (𝑛 − 𝑛 + 𝜖))
𝑁 sin ((𝜋/𝑁) (𝑛 − 𝑛 + 𝜖))

⋅ exp [𝑗𝜋 (1 − 1𝑁) 𝜖])
2

.
(51)

Here at the receiver, in addition to the summations over 𝑚,𝑘 that model intercell and intracell interference, the received
signal over subcarrier 𝑛 depends also on all other subcarriers
through ICI and thus the summation over 𝑛. Note that the
formulation reduces to that of the non-ICI scenario when 𝜖 =0, or equivalently 𝜌𝑛 ,𝑛 = 𝛿𝑛 ,𝑛. The achievable instantaneous
data-rate under ICI for user (𝑚, 𝑘) on subcarrier 𝑛 is then
given by

𝑟ICI(𝑚,𝑘),𝑛 = + log
I + ∑
𝑚 ,𝑘 ,𝑛

𝜌𝑛,𝑛
⋅H𝑚 ,(𝑚,𝑘),𝑛F(𝑚 ,𝑘),𝑛F𝐻(𝑚 ,𝑘),𝑛H𝐻𝑚 ,(𝑚,𝑘),𝑛

 − log
I

+ ∑
(𝑚 ,𝑘 ,𝑛) ̸=(𝑚,𝑘,𝑛)

𝜌𝑛,𝑛H𝑚 ,(𝑚,𝑘),𝑛
⋅ F(𝑚 ,𝑘),𝑛F𝐻(𝑚 ,𝑘),𝑛H𝐻𝑚 ,(𝑚,𝑘),𝑛

 .

(52)

If we define

Ã(𝑚,𝑘),𝑛 ≜ [√𝜌1,𝑛H1,(𝑚,𝑘),1F1,1, . . . , √𝜌𝑁,𝑛H1,(𝑚,𝑘),𝑁F1,𝑁,
. . . , √𝜌𝑛,𝑛H𝑚,(𝑚,𝑘),𝑛F𝑚,𝑛, . . . , √𝜌1,𝑛H𝑀,(𝑚,𝑘),1F𝑀,1, . . . ,

√𝜌𝑁,𝑛H𝑀,(𝑚,𝑘),𝑁F𝑀,𝑁] ,
B̃(𝑚,𝑘),𝑛 ≜ [√𝜌1,𝑛H1,(𝑚,𝑘),1F1,1, . . . , √𝜌𝑁,𝑛H1,(𝑚,𝑘),𝑁F1,𝑁,

. . . , √𝜌𝑛,𝑛H𝑚,(𝑚,𝑘),𝑛F̆𝑚,𝑘,𝑛, . . . , √𝜌1,𝑛H𝑀,(𝑚,𝑘),1F𝑀,1, . . . ,
√𝜌𝑁,𝑛H𝑀,(𝑚,𝑘),𝑁F𝑀,𝑁] ,

(53)

then we can write

𝑟ICI(𝑚,𝑘),𝑛 = log
I + Ã(𝑚,𝑘),𝑛Ã

𝐻

(𝑚,𝑘),𝑛


− log

I + B̃(𝑚,𝑘),𝑛B̃
𝐻

(𝑚,𝑘),𝑛

 .
(54)

Based on this result, we can utilize the same random matrix
method employed for the non-ICI scenario to derive the
approximated rate �̃�ICI(𝑚,𝑘),𝑛 ≈ EH[𝑟ICI(𝑚,𝑘),𝑛].

The optimization problem we consider is similar to (P1)
but using the rate under ICI, that is, 𝑟ICI(𝑚,𝑘),𝑛. As before, we
replace the rate 𝑟ICI(𝑚,𝑘),𝑛 by its approximation �̃�ICI(𝑚,𝑘),𝑛 for tracta-
bility. Therefore, the following optimization problem is
formed:

max
F

𝑀∑
𝑚=1

𝐾∑
𝑘=1

𝑤(𝑚,𝑘) 𝑁∑
𝑛=1

�̃�ICI(𝑚,𝑘),𝑛
s.t. 𝐾∑

𝑘=1

𝑁∑
𝑛=1

tr (F(𝑚,𝑘),𝑛F𝐻(𝑚,𝑘),𝑛) = 𝑃𝑚, ∀𝑚.
(P3)

6.2. Second-Order Statistics under ICI. Due to the ICI, in
addition to per-carrier statistics, the BSs now share the addi-
tional information of cross-carrier correlation. Specifically,
the cross-carrier covariance matrices,

Ω𝑚 ,(𝑚,𝑘),𝑛1,𝑛2

≜ EH [vec {H𝑚 ,(𝑚,𝑘),𝑛1} vec𝐻 {H𝑚,(𝑚,𝑘),𝑛2}] ,
(55)

are assumed to be available at all BSs. This additional
information is important for the BSs to suppress the ICI.
For Kronecker model, the transmitter, receiver, and tap
correlation matrices are sufficient because we have

Ω𝑚 ,(𝑚,𝑘),𝑛1 ,𝑛2 = 𝜔Υ𝑚,(𝑚,𝑘)𝑛1 ,𝑛2 (T𝑚,(𝑚,𝑘) ⊗ R𝑚 ,(𝑚,𝑘)) (56)

with 𝜔Υ𝑚,(𝑚,𝑘)𝑛1 ,𝑛2 = w𝐻𝑛1Υ𝑚 ,(𝑚,𝑘)w𝑛2 .
We will now find the second-order statistics of Ã(𝑚,𝑘),𝑛

and B̃(𝑚,𝑘),𝑛 which depend on Ω𝑚 ,(𝑚,𝑘),𝑛1 ,𝑛2 . It can be shown
that

Σ
Ã
(𝑚,𝑘),𝑛

= diag {ΣICI1,(𝑚,𝑘),𝑛, . . . ,ΣICI𝑚,(𝑚,𝑘),𝑛, . . . ,ΣICI𝑀,(𝑚,𝑘),𝑛}
Σ
B̃
(𝑚,𝑘),𝑛

= diag {ΣICI1,(𝑚,𝑘),𝑛, . . . , Σ̆ICI𝑚,(𝑚,𝑘),𝑛, . . . ,ΣICI𝑀,(𝑚,𝑘),𝑛}

(57)
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where ΣICI𝑚 ,(𝑚,𝑘),𝑛 and Σ̆
ICI
𝑚,(𝑚,𝑘),𝑛 are block matrices holding𝑁2

blocks with block (𝑛1, 𝑛2) given by

Σ
ICI(𝑛1 ,𝑛2)
𝑚 ,(𝑚,𝑘),𝑛

= √𝜌𝑛1,𝑛𝜌𝑛2,𝑛
× (F𝑇𝑚 ,𝑛1 ⊗ I𝑁𝑈)Ω𝑚 ,(𝑚,𝑘),𝑛1 ,𝑛2 (F𝑇𝑚 ,𝑛1 ⊗ I𝑁𝑈)𝐻 ,

Σ̆
ICI(𝑛1 ,𝑛2)
𝑚,(𝑚,𝑘),𝑛 = √𝜌𝑛1 ,𝑛𝜌𝑛2 ,𝑛U𝑚,𝑘,𝑛1Ω𝑚,(𝑚,𝑘),𝑛1 ,𝑛2U𝐻𝑚,𝑘,𝑛2 ,

(58)

with U𝑚,𝑘,�̃� = F𝑇𝑚,�̃� ⊗ I𝑁𝑈 , ∀�̃� ̸= 𝑛, and U𝑚,𝑘,�̃� = F̆
𝑇

𝑚,𝑘,𝑛 ⊗ I𝑁𝑈 ,∀�̃� ̸= 𝑛.
Finally, we define the eigenvalue matrices as

Λ
Ã
(𝑚,𝑘),𝑛 = [ΛICI1,(𝑚,𝑘),𝑛, . . . ,ΛICI𝑚,(𝑚,𝑘),𝑛, . . . ,ΛICI𝑀,(𝑚,𝑘),𝑛] ,
Λ
B̃
(𝑚,𝑘),𝑛 = [ΛICI1,(𝑚,𝑘),𝑛, . . . , Λ̆ICI𝑚,(𝑚,𝑘),𝑛, . . . ,ΛICI𝑀,(𝑚,𝑘),𝑛] ,

(59)

where 𝑁𝑈 × 𝑁𝑈𝐾𝑁 eigenvalue matrix ΛICI𝑚 ,(𝑚,𝑘),𝑛 and 𝑁𝑈 ×
𝑁𝑈(𝐾 − 1)𝑁 eigenvalue matrix Λ̆

ICI
𝑚,(𝑚,𝑘),𝑛 are formed by

stacking the eigenvalues of ΣICI𝑚 ,(𝑚,𝑘),𝑛 and Σ̆
ICI
𝑚,(𝑚,𝑘),𝑛 in𝑁𝑈 × 1

sized columns, respectively.

6.3. Rate Approximation under ICI. Using the second-order
statistics derived above, and by extending Theorem 2, we
present the rate approximation under ICI in the following
corollary.

Corollary 4. For𝑁𝐵 ≥ 𝑁𝑈 → ∞ we have

𝑟ICI(𝑚,𝑘),𝑛 − �̃�ICI(𝑚,𝑘),𝑛𝑁𝑈 → 0, (60)

in which �̃�ICI(𝑚,𝑘),𝑛 is a deterministic function given by

�̃�ICI(𝑚,𝑘),𝑛 = −𝑁𝑈𝐾𝑁𝑀∑
𝑗=1

log [kÃ(𝑚,𝑘),𝑛]𝑗

+ 𝑁𝑈(𝐾𝑁𝑀−1)∑
𝑗=1

log [kB̃(𝑚,𝑘),𝑛]𝑗 +
𝑁𝑈∑
𝑖=1

[[
[
log

[uB̃(𝑚,𝑘),𝑛]𝑖[uÃ
(𝑚,𝑘),𝑛

]
𝑖

+ 𝑁𝑈 log 𝑒 ([uÃ(𝑚,𝑘),𝑛]𝑖 − [uB̃(𝑚,𝑘),𝑛]𝑖)]]]
− 𝑁𝑈

⋅ log (𝑁𝑈 (𝐾𝑁𝑀 − 1)) + 𝑁𝑈𝐾𝑁𝑀 log(1
− 1𝐾𝑁𝑀) ,

(61)

where uÃ(𝑚,𝑘),𝑛 ∈ R𝑁𝑈 , kÃ(𝑚,𝑘),𝑛 ∈ R𝐾𝑁𝑈𝑀𝑁, uB̃(𝑚,𝑘),𝑛 ∈ R𝑁𝑈 , and
kB̃(𝑚,𝑘),𝑛 ∈ R(𝐾𝑁𝑀−1)𝑁𝑈 are the solutions to the following fixed
point equations:

[uÃ(𝑚,𝑘),𝑛]−1𝑖 = 𝑁𝑈 (1 + 𝐾𝑁𝑀𝑁𝑈 [ΛÃ(𝑚,𝑘),𝑛kÃ(𝑚,𝑘),𝑛]𝑖) ,
[kÃ(𝑚,𝑘),𝑛]−1𝑗

= 𝑁𝑈𝐾𝑁𝑀(1 + 𝑁𝑈 [ΛÃ(𝑚,𝑘),𝑛𝑇uÃ(𝑚,𝑘),𝑛]
𝑗
) ,

[uB̃(𝑚,𝑘),𝑛]−1𝑖
= 𝑁𝑈 (1 + 𝑁𝑈 (𝐾𝑁𝑀 − 1) [ΛB̃(𝑚,𝑘),𝑛vB̃(𝑚,𝑘),𝑛]𝑖) ,

[vB̃(𝑚,𝑘),𝑛]−1𝑗
= 𝑁𝑈 (𝐾𝑁𝑀 − 1) (1 + 𝑁𝑈 [ΛB̃(𝑚,𝑘),𝑛𝑇uB̃(𝑚,𝑘),𝑛]

𝑗
) ,

(62)

where 𝑖 and 𝑗 range according to the vector sizes.
6.4. Weighted Sum Rate Optimization under ICI. After the
change of variables to spherical coordinates in a similar
manner to Section 4, the KKT conditions for (P3) are∑𝑀𝑚=1∑𝐾𝑘=1 𝑤(𝑚,𝑘)∑𝑁𝑛=1D𝜃𝑚 �̃�ICI(𝑚,𝑘),𝑛 = 0, ∀𝑚. Under ICI, the
rate is a function of precoders over all subcarriers and not just𝑛, so the gradient is modified as

D𝜃
𝑚
�̃�ICI(𝑚,𝑘),𝑛 = 𝑁∑

𝑛=1

Df
𝑚,𝑛

�̃�ICI(𝑚,𝑘),𝑛D𝜃𝑚 f𝑚 ,𝑛 . (63)

Here, due to the ICI, we need to sum over all subcarriers to
calculate the gradient function. The above derivative can be
obtained with the chain rule in a similar manner to Section 4;
however, we need the derivatives with respect to all sub-
carriers and not just 𝑛, as is seen from (63). Another difficulty
involved under ICI is the calculation of DF

(𝑚,𝑘),𝑛
ΛICI𝑚 ,(𝑚,𝑘),𝑛

andDF
(𝑚,𝑘),𝑛
Λ̆
ICI
𝑚,(𝑚,𝑘),𝑛which are rather different from the case

without ICI. We shall only derive the above two terms under
ICI because other terms are straightforward to find.

For general channels, it can be shown that

DF
(𝑚,𝑘),𝑛
Λ
ICI
𝑚 ,(𝑚,𝑘),𝑛

=
[[[[[[
[

vec𝑇 {𝛾1𝑚 ,(𝑚,𝑘),𝑛∗𝛾1𝑚 ,(𝑚,𝑘),𝑛𝑇}...
vec𝑇 {𝛾𝐾𝑁𝑁2𝑈

𝑚 ,(𝑚,𝑘),𝑛

∗

𝛾
𝐾𝑁𝑁2𝑈
𝑚 ,(𝑚,𝑘),𝑛

𝑇}

]]]]]]
]

[[[[
[

Y𝑛 ,1...
Y𝑛 ,𝑁

]]]]
]
,

DF
(𝑚,𝑘),𝑛
Λ̆
ICI
𝑚,(𝑚,𝑘),𝑛

=
[[[[[[
[

vec𝑇 {�̆�1𝑚,(𝑚,𝑘),𝑛∗�̆�1𝑚,(𝑚,𝑘),𝑛𝑇}...
vec𝑇 {�̆�(𝐾𝑁−1)𝑁2𝑈

𝑚,(𝑚,𝑘),𝑛

∗

�̆�
(𝐾𝑁−1)𝑁2𝑈
𝑚,(𝑚,𝑘),𝑛

𝑇}

]]]]]]
]

[[[[
[

Y̆𝑛 ,1...
Y̆𝑛 ,𝑁

]]]]
]
,

(64)

where 𝛾𝑖𝑚 ,(𝑚,𝑘),𝑛 and �̆�
𝑖
𝑚,(𝑚,𝑘),𝑛 are the 𝑖th eigenvectors of

ΣICI𝑚 ,(𝑚,𝑘),𝑛 and Σ̆
ICI
𝑚,(𝑚,𝑘),𝑛, respectively, and Y̆𝑛 ,�̃� are given by
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Y𝑛 ,�̃� = √𝜌𝑛,𝑛𝜌�̃�,𝑛K𝐾𝑁2
𝑈
,𝐾𝑁𝑁2

𝑈
[0 (F𝑇𝑚 ,�̃� ⊗ I𝑁𝑈)∗Ω𝑇𝑚 ,(𝑚,𝑘),𝑛 ,�̃� ⊗ I𝐾𝑁2

𝑈
0]𝑇 (I𝑁𝐵 ⊗ K𝑁𝑈,𝐾𝑁𝑈)

× (I𝐾𝑁𝑈𝑁𝐵 ⊗ vec {I𝑁𝑈})K𝑁𝐵,𝐾𝑁𝑈 (e𝐾𝑘 ⊗ I𝑁𝑈𝑁𝐵) ,
Y̆𝑛 ,�̃� = √𝜌𝑛,𝑛𝜌�̃�,𝑛 × {{{

K(𝐾−1)𝑁2
𝑈
,(𝐾𝑁−1)𝑁2

𝑈
, �̃� = 𝑛

K𝐾𝑁2
𝑈
,(𝐾𝑁−1)𝑁2

𝑈
, �̃� ̸= 𝑛 × [0 U𝑇�̃� ⊗ I(𝐾−1)𝑁2

𝑈
0]𝑇 (I𝑁𝐵 ⊗ K𝑁𝑈,(𝐾−1)𝑁𝑈)

× (I(𝐾−1)𝑁𝑈𝑁𝐵 ⊗ vec {I𝑁𝑈})K𝑁𝐵,(𝐾−1)𝑁𝑈 [0 I𝑁𝑈𝑁𝐵 0]𝑇 .

(65)

For Kronecker channels, it can be shown that
DF
(𝑚,𝑘),𝑛
ΛICI𝑚 ,(𝑚,𝑘),𝑛 andDF

(𝑚,𝑘),𝑛
Λ̆
ICI
𝑚,(𝑚,𝑘),𝑛 are given by

DF
(𝑚,𝑘),𝑛
Λ
ICI
𝑚 ,(𝑚,𝑘),𝑛 = (I𝐾𝑁𝑈𝑁 ⊗ 𝜆R𝑚,(𝑚 ,𝑘))

⋅
[[[[[[
[

vec𝑇 {𝛽1𝑚 ,(𝑚,𝑘),𝑛∗𝛽1𝑚 ,(𝑚,𝑘),𝑛𝑇}...
vec𝑇 {𝛽𝐾𝑁𝑈𝑁

𝑚 ,(𝑚,𝑘),𝑛

∗
𝛽
𝐾𝑁𝑈𝑁

𝑚 ,(𝑚,𝑘),𝑛

𝑇}

]]]]]]
]
(W𝑚,(𝑚,𝑘),𝑛

⊗ I𝐾𝑁𝑈𝑁) × K𝐿𝑁𝐵,𝐾𝑁𝑈𝑁e
𝑁𝐾
(𝑛−1)𝐾+𝑘

⊗ [√𝜌𝑛 ,𝑛 (K𝑁𝑈,𝐿 ⊗ I𝑁𝐵)
⋅ (vec {Υ1/2

𝑚 ,(𝑚,𝑘)

𝑇}w𝑛 ⊗ I𝑁𝐵𝑁𝑈)
⋅ (I𝑁𝑈 ⊗ T1/2

𝑚 ,(𝑚,𝑘)
)] ,

DF
(𝑚,𝑘),𝑛
Λ̆
ICI
𝑚,(𝑚,𝑘),𝑛 = (I𝑁𝑈(𝐾𝑁−1) ⊗ 𝜆R𝑚,(𝑚,𝑘))

⋅
[[[[[[[
[

vec𝑇 {�̆�1𝑚,(𝑚,𝑘),𝑛∗�̆�1𝑚,(𝑚,𝑘),𝑛𝑇}...
vec𝑇 {�̆�𝑁𝑈(𝐾𝑁−1)𝑚,(𝑚,𝑘),𝑛

∗

�̆�
𝑁𝑈(𝐾𝑁−1)

𝑚,(𝑚,𝑘),𝑛

𝑇}

]]]]]]]
]
(W̆𝑚,(𝑚,𝑘),𝑛

⊗ I𝑁𝑈(𝐾𝑁−1)) × K𝐿𝑁𝐵,𝑁𝑈(𝐾𝑁−1)k𝑘 ,𝑛

⊗ [√𝜌𝑛 ,𝑛 (K𝑁𝑈,𝐿 ⊗ I𝑁𝐵)
⋅ (vec {Υ1/2𝑚,(𝑚,𝑘)𝑇}w𝑛 ⊗ I𝑁𝐵𝑁𝑈) (I𝑁𝑈 ⊗ T1/2𝑚,(𝑚,𝑘))]

(66)

in which

W𝑚 ,(𝑚,𝑘),𝑛

= [[[[[
[

√𝜌1,𝑛w𝑇1Υ1/2𝑚 ,(𝑚,𝑘) ⊗ (F𝑚 ,1T1/2𝑚 ,(𝑚,𝑘)𝑇)...
√𝜌𝑁,𝑛w𝑇𝑁Υ1/2𝑚 ,(𝑚,𝑘) ⊗ (F𝑚 ,𝑁T1/2𝑚,(𝑚,𝑘)𝑇)

]]]]]
]
,

W̆𝑚,(𝑚,𝑘),𝑛

=

[[[[[[[[[[[[[
[

√𝜌1,𝑛w𝑇1Υ1/2𝑚,(𝑚,𝑘) ⊗ (F𝑚,1T1/2𝑚,(𝑚,𝑘)𝑇)...
√𝜌𝑛,𝑛w𝑇𝑛Υ1/2𝑚,(𝑚,𝑘) ⊗ (F̆𝑚,𝑘,𝑛T1/2𝑚,(𝑚,𝑘)𝑇)...
√𝜌𝑁,𝑛w𝑇𝑁Υ1/2𝑚,(𝑚,𝑘) ⊗ (F𝑚,𝑁T1/2𝑚,(𝑚,𝑘)𝑇)

]]]]]]]]]]]]]
]

,

(67)

and 𝛽𝑖𝑚 ,(𝑚,𝑘),𝑛 and �̆�
𝑖

𝑚,(𝑚,𝑘),𝑛 are the 𝑖th eigenvectors of
W𝑚 ,(𝑚,𝑘),𝑛 and W̆𝑚,(𝑚,𝑘),𝑛, respectively, and

v𝑘 ,𝑛

=
{{{{{{{{{

e𝑁𝐾−1(𝑛−1)𝐾+𝑘−1, (𝑛 − 1)𝐾 + 𝑘 < (𝑛 − 1)𝐾 + 𝑘,
e𝑁𝐾−1(𝑛−1)𝐾+𝑘 , (𝑛 − 1)𝐾 + 𝑘 > (𝑛 − 1)𝐾 + 𝑘,
0𝑁𝐾−1, (𝑛 − 1)𝐾 + 𝑘 = (𝑛 − 1)𝐾 + 𝑘.

(68)

The computational complexity is greatly reduced for the Kro-
necker channel model from O(𝐾2𝑁4𝑈𝑁) to O(𝐿𝑁𝐵𝐾𝑁𝑈𝑁).

We can now propose Algorithm 2 to find a suboptimal
solution to (P3). Note that this algorithm is computationally
more cumbersome compared to Algorithm 1, since the num-
ber of components inD𝜃

𝑚
�̃�ICI(𝑚,𝑘),𝑛 is𝑁 times larger due to the

ICI.

7. Simulation Results

In this section, we demonstrate the approximation accuracy
and evaluate the performance of our algorithms. We con-
sider a downlink multicell MIMO-OFDM system, where the
number of cells and users in each cell is set to be 4, and the
number of subcarriers is set to 8, that is, 𝑀 = 4, 𝐾 = 4, and𝑁 = 8. The number of antennas for users and BSs is set to
3 unless stated otherwise; that is, 𝑁𝐵 = 3 and 𝑁𝑈 = 3. The
users are uniformly distributed in cells with 0.5 Km radius.
Without loss of generality, the weighting for the sum rate
maximization is uniform in the simulations, that is, 𝑤(𝑚,𝑘) =1/𝑁𝑀, ∀𝑚, 𝑘. We assume the power constraints are the same
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(1) Initialize:
initialize 𝜃𝑚 (0), ∀𝑚 and 𝑡 ← 0;

(2) while stopping criterion not met do
(3) compute F(𝑚 ,𝑘),𝑛, ∀𝑚, 𝑘, 𝑛 using (28), (30);
(4) solve for uÃ

(𝑚,𝑘),𝑛, k
Ã
(𝑚,𝑘),𝑛, u

B̃
(𝑚,𝑘),𝑛, k

B̃
(𝑚,𝑘),𝑛, ∀𝑚, 𝑘, 𝑛, using Corollary 4;

(5) computeD
𝜃
𝑚
�̃�ICI(𝑚,𝑘),𝑛, ∀𝑚, 𝑚, 𝑘, 𝑛 using (63);

(6) 𝜃𝑚 (𝑡 + 1) ← 𝜃𝑚 (𝑡) + 𝛼(𝑡)∑𝑚,𝑘,𝑛 𝑤(𝑚,𝑘)D𝑇𝜃
𝑚
�̃�ICI(𝑚,𝑘),𝑛, ∀𝑚 and 𝑡 ← 𝑡 + 1;

(7) end while
(8) return F(𝑚 ,𝑘),𝑛, ∀𝑚;

Algorithm 2: Gradient search solution to problem (P3).

for all BSs, that is, 𝑃𝑚 = 𝑃, ∀𝑚. Since the noise power was
normalized to unity, the transmitter signal-to-noise ratio is
SNR = 10 log10𝑃.

We consider the Kronecker channel model introduced in
Section 5 with correlation matrices

[T𝑚,(𝑚,𝑘)]𝑖,𝑗 = ( 𝛼𝑑𝑚 ,(m,𝑘))
2 𝜌|𝑖−𝑗|T ,

[R𝑚 ,(𝑚,𝑘)]𝑖,𝑗 = ( 𝛼𝑑𝑚 ,(𝑚,𝑘))
2 𝜌|𝑖−𝑗|R ,

(69)

in which 𝑑𝑚 ,(𝑚,𝑘) denotes the distance between BS 𝑚
and user (𝑚, 𝑘), and 𝜌T, 𝜌R are the spatial correlation
factors as defined in [44]. The constant 𝛼 is chosen so that
E[(𝛼/𝑑𝑚(𝑚,𝑘))2] = 1. While not explicitly specified, we also
choose 𝜌T, 𝜌R to be random and uniformly distributed in the
interval [0.5, 1] for each user. The tap correlation matrix is
chosen as

[Υ𝑚 ,(𝑚,𝑘)]𝑖,𝑗 = √𝛾𝑖𝛾𝑗𝜌|𝑖−𝑗|Υ , (70)

where 𝜌Υ is the tap correlation factor and ∑𝐿𝑖=1 𝛾𝑖 = 1 with𝛾𝑖/𝛾𝑖+1 = 3 dB as defined in [34]. The number of channel taps
is assumed to be 3 throughout our simulations; that is, 𝐿 = 3.
The ICI is modelled according to (51).

7.1. Approximation Accuracy. We compare the exact ergodic
sum rate obtained by simulations and its approximation
given by Theorem 2 or Corollary 4. The results are depicted
in Figure 2, where it is seen that the approximations are
extremely accurate. Note that although the approximations
are asymptotic, exceptional accuracy is observed for our small
size MIMO system (𝑁𝐵 = 3, 𝑁𝑈 = 3); this fact justifies this
approximation approach for practical antenna sizes. It is also
seen that the approximation is accurate across a wide range
of SNRs.

7.2. System Performance. Now we demonstrate the perfor-
mance of our proposed method given by Algorithm 1, which
is based only on statistical CSI at the BSs. For comparison, we
shall also depict the results of two other methods. First, the
results of the algorithm are based on perfect instantaneous
CSI proposed in [12], which assumes the same system model
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Figure 2: Approximation accuracy for the ergodic sum rate.

as this work but with full CSI at the BSs. Second, the results
of networked MIMO are based on statistical CSI, where, in
addition to the channel statistics, it is assumed that each BS
has all the transmit data, so the whole system can be viewed
as a MIMO super-cell with statistical CSI at the transmitter.
The above two systems obviously require much heavier BS
coordination, but as we shall see, our method competes with
them. As mentioned before, our proposed algorithm is not
limited to multicell networks with partial cooperation, so
with small modifications it can be used for precoder design
based on statistical CSI for networked MIMO systems.

Figure 3 depicts the results where it is observed that
although our method uses statistical CSI with limited BS
cooperation, the achievable weighted sum rate is comparable
to that with full CSI and networkedMIMO for awide range of
SNRs; note that statistical CSI incurs a much lower signaling
overhead and requires less frequent update compared to full
CSI. Here, we also see the results for different tap correlation
factors. While tap correlations degrade system performance,
using our method to incorporate the correlation information
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Figure 3: System performance under different conditions.

into precoder design alleviates the performance loss as seen
in Figure 3. Moreover, it is observed that lack of knowledge
about the tap correlations or neglecting them (assuming
uncorrelated channel taps) leads to performance loss. When
no precoders are employed (identitymatrix precoding), there
is a huge disadvantage, so precoder design is crucial in the
MIMO-OFDM system.

7.2.1. Correlation Factors. In Figures 4 and 5, we investigate
the effect of tap correlation and spatial correlation factors
on the system performance. We see that both tap correlation
and spatial correlation decrease the weighted sum rate.
However, the spatial correlation showsmore prominent effect
on the sum rate. It is seen that as long as the correlation
information is incorporated into precoder design via our
proposed algorithm, the performance loss is not significant
for a wide range of correlation degrees. It is noteworthy to
mention that the performance loss becomes slightly larger at
lower SNRs.

7.2.2. Number of Antennas. Figure 6 shows the sum rate as
the number of transmitter antennas 𝑁𝐵 increases; here the
number of receiver antennas is fixed to𝑁𝑈 = 2.The weighted
sum rate is seen to increase with𝑁𝐵. As it is seen, the slope of
performance increase for Algorithm 1 and that of the method
in [12] based on full CSI is similar as 𝑁𝐵 increases. This
suggests that our proposed method is reliable for arbitrary
large MIMO-OFDM systems.

7.3. System Performance under ICI. Now we present the
system performance when there is ICI. Due to the cross
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Figure 4: Impact of tap correlations.
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Figure 5: Impact of spatial correlations.

interference from other subcarriers, the sum rate decreases as
is seen in Figure 7. It is seen that, for nonnegligible FO, there
can be a serious decrease in the sum rate. However, smart
precoder design implemented by Algorithm 2 can suppress
ICI and achieve a reasonable sum rate. It is observed that
the performance gain of our method over the nonprecoding
scheme increases with SNR. Moreover, the advantages is
more pronounced for smaller frequency offsets. However, we
note that the gap between ICI-free system and system with
ICI also increases with SNR.
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Figure 7: System performance under ICI.

In Figure 8, we plot the weighted sum rate versus the ICI
intensity factor for SNR = 15 dB. We see that the system sum
rate is highly sensitive to ICI for small 𝜖.
7.4. Convergence Rate. Now we compare the convergence
rates for the Algorithms 1 and 2 for SNR = 15 dB and 𝜖 =0%, 1%, 10%, and 20%. The initial precoders are chosen to
be the identity matrix. Under various degrees of ICI, we
see from Figure 9 that Algorithm 1 always converges faster
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Figure 9: Convergence rate of Algorithms 1 and 2.

than Algorithm 2. When there is ICI, the convergence rate of
Algorithm 2 is similar for various degrees of ICI.

8. Conclusions

We investigated linear precoding for downlink multicell
MIMO-OFDM systems based on statistical CSI. The main
contribution of this workwas applying the already established
results of random matrix theory to the MIMO-OFDM sce-
nario in order to study the impact of frequency selectivity,
tap correlations, and ICI on the statistical precoder design
and system performance. The asymptotic approximations to
the ergodic rates in ICI and ICI-free scenarios were derived,
based on which, we formulated two nonconvex sum rate
maximization problems and proposed locally optimum gra-
dient based solutions to them. Simulation results showed that
while spatial correlations, tap correlations, and ICI decrease
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the system sum rate, our method alleviates this performance
loss by incorporating the correlation information and ICI
intensity information into the precoder design.
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