2 research outputs found

    Asymmetric Dual-Arm Task Execution using an Extended Relative Jacobian

    Full text link
    Coordinated dual-arm manipulation tasks can be broadly characterized as possessing absolute and relative motion components. Relative motion tasks, in particular, are inherently redundant in the way they can be distributed between end-effectors. In this work, we analyse cooperative manipulation in terms of the asymmetric resolution of relative motion tasks. We discuss how existing approaches enable the asymmetric execution of a relative motion task, and show how an asymmetric relative motion space can be defined. We leverage this result to propose an extended relative Jacobian to model the cooperative system, which allows a user to set a concrete degree of asymmetry in the task execution. This is achieved without the need for prescribing an absolute motion target. Instead, the absolute motion remains available as a functional redundancy to the system. We illustrate the properties of our proposed Jacobian through numerical simulations of a novel differential Inverse Kinematics algorithm.Comment: Accepted for presentation at ISRR19. 16 Page

    Cooperative Manipulation and Identification of a 2-DOF Articulated Object by a Dual-Arm Robot

    No full text
    In this work, we address the dual-arm manipula-tion of a two degrees-of-freedom articulated object that consistsof two rigid links. This can include a linkage constrainedalong two motion directions, or two objects in contact, wherethe contact imposes motion constraints. We formulate theproblem as a cooperative task, which allows the employment ofcoordinated task space frameworks, thus enabling redundancyexploitation by adjusting how the task is shared by the robotarms. In addition, we propose a method that can estimate thejoint location and the direction of the degrees-of-freedom, basedon the contact forces and the motion constraints imposed bythe object. Experimental results demonstrate the performanceof the system in its ability to estimate the two degrees of freedomindependently or simultaneously.QC 20180423SARAFu
    corecore