2 research outputs found

    Macro action selection with deep reinforcement learning in StarCraft

    Full text link
    StarCraft (SC) is one of the most popular and successful Real Time Strategy (RTS) games. In recent years, SC is also widely accepted as a challenging testbed for AI research because of its enormous state space, partially observed information, multi-agent collaboration, and so on. With the help of annual AIIDE and CIG competitions, a growing number of SC bots are proposed and continuously improved. However, a large gap remains between the top-level bot and the professional human player. One vital reason is that current SC bots mainly rely on predefined rules to select macro actions during their games. These rules are not scalable and efficient enough to cope with the enormous yet partially observed state space in the game. In this paper, we propose a deep reinforcement learning (DRL) framework to improve the selection of macro actions. Our framework is based on the combination of the Ape-X DQN and the Long-Short-Term-Memory (LSTM). We use this framework to build our bot, named as LastOrder. Our evaluation, based on training against all bots from the AIIDE 2017 StarCraft AI competition set, shows that LastOrder achieves an 83% winning rate, outperforming 26 bots in total 28 entrants

    Macro action selection with deep reinforcement learning in StarCraft

    Get PDF
    StarCraft (SC) is one of the most popular and successful Real Time Strategy (RTS) games. In recent years, SC is also considered as a testbed for AI research, due to its enormous state space, hidden information, multi-agent collaboration and so on. Thanks to the annual AIIDE and CIG competitions, a growing number of bots are proposed and being continuously improved. However, a big gap still remains between the top bot and the professional human players. One vital reason is that current bots mainly rely on predefined rules to perform macro actions. These rules are not scalable and efficient enough to cope with the large but partially observed macro state space in SC. In this paper, we propose a DRL based framework to do macro action selection. Our framework combines the reinforcement learning approach Ape-X DQN with Long-Short-Term-Memory (LSTM) to improve the macro action selection in bot. We evaluate our bot, named as LastOrder, on the AIIDE 2017 StarCraft AI competition bots set. Our bot achieves overall 83% win-rate, outperforming 26 bots in total 28 entrants
    corecore