211 research outputs found

    Cooperative Decentralized Multi-agent Control under Local LTL Tasks and Connectivity Constraints

    Full text link
    We propose a framework for the decentralized control of a team of agents that are assigned local tasks expressed as Linear Temporal Logic (LTL) formulas. Each local LTL task specification captures both the requirements on the respective agent's behavior and the requests for the other agents' collaborations needed to accomplish the task. Furthermore, the agents are subject to communication constraints. The presented solution follows the automata-theoretic approach to LTL model checking, however, it avoids the computationally demanding construction of synchronized product system between the agents. We suggest a decentralized coordination among the agents through a dynamic leader-follower scheme, to guarantee the low-level connectivity maintenance at all times and a progress towards the satisfaction of the leader's task. By a systematic leader switching, we ensure that each agent's task will be accomplished.Comment: full version of CDC 2014 submissio

    Decentralized Abstractions and Timed Constrained Planning of a General Class of Coupled Multi-Agent Systems

    Full text link
    This paper presents a fully automated procedure for controller synthesis for a general class of multi-agent systems under coupling constraints. Each agent is modeled with dynamics consisting of two terms: the first one models the coupling constraints and the other one is an additional bounded control input. We aim to design these inputs so that each agent meets an individual high-level specification given as a Metric Interval Temporal Logic (MITL). Furthermore, the connectivity of the initially connected agents, is required to be maintained. First, assuming a polyhedral partition of the workspace, a novel decentralized abstraction that provides controllers for each agent that guarantee the transition between different regions is designed. The controllers are the solution of a Robust Optimal Control Problem (ROCP) for each agent. Second, by utilizing techniques from formal verification, an algorithm that computes the individual runs which provably satisfy the high-level tasks is provided. Finally, simulation results conducted in MATLAB environment verify the performance of the proposed framework

    Cooperative Task Planning of Multi-Agent Systems Under Timed Temporal Specifications

    Full text link
    In this paper the problem of cooperative task planning of multi-agent systems when timed constraints are imposed to the system is investigated. We consider timed constraints given by Metric Interval Temporal Logic (MITL). We propose a method for automatic control synthesis in a two-stage systematic procedure. With this method we guarantee that all the agents satisfy their own individual task specifications as well as that the team satisfies a team global task specification.Comment: Submitted to American Control Conference 201
    • …
    corecore