187 research outputs found

    A Methodological Framework to Assess Road Infrastructure Safety and Performance Efficiency in the Transition toward Cooperative Driving

    Get PDF
    There is increasing interest in connected and automated vehicles (CAVs), since their implementation will transform the nature of transportation and promote social and economic change. Transition toward cooperative driving still requires the understanding of some key questions to assess the performances of CAVs and human-driven vehicles on roundabouts and to properly balance road safety and traffic efficiency requirements. In this view, this paper proposes a simulation-based methodological framework aiming to assess the presence of increasing proportions of CAVs on roundabouts operating at a high-capacity utilization level. A roundabout was identified in Palermo City, Italy, and built in Aimsun (version 20) to describe the stepwise methodology. The CAV-based curves of capacity by entry mechanism were developed and then used as target capacities. To calibrate the model parameters, the capacity curves were compared with the capacity data simulated by Aimsun. The impact on the safety and performance efficiency of a lane dedicated to CAVs was also examined using surrogate measures of safety. The paper ends with highlighting a general improvement with CAVs on roundabouts, and with providing some insights to assess the advantages of the automated and connected driving technologies in transitioning to smarter mobilit

    Modelação interpretativa da segurança e emissões em corredores de rotundas e semáforos

    Get PDF
    Scientific research has demonstrated that the operational, environmental and safety performance for pedestrians depend on the geometric and traffic stream characteristics of the roundabout. However, the implementation of roundabouts may result in a trade-off among capacity, environmental, and safety variables. Also, little is known about the potential impacts for traffic from the use of functionally interdependent roundabouts in series along corridors. Thus, this doctoral thesis stresses the importance of understanding in how roundabout corridors affect traffic performance, vehicular emissions and safety for vulnerable users as pedestrians. The development of a methodology capable of integrating corridor’s geometric and operational elements is a contribution of this work. The main objectives of the thesis are as follows: 1) to analyze the effect of corridor’s design features in the acceleration patterns and emissions; 2) to understand the differences in the spatial distribution of emissions between roundabouts in isolation and along corridors; 3) to compare corridors with different forms of intersections such as conventional roundabouts, turbo-roundabouts, traffic lights and stop-controlled intersections; and 4) to design corridor-specific characteristics to optimize vehicle delay, and global (carbon dioxide – CO2) and local (carbon monoxide – CO, nitrogen oxides – NOX and hydrocarbons – HC) pollutant emissions. Vehicle dynamics along with traffic and pedestrian flow data were collected from 12 corridors with conventional roundabouts located in Portugal, Spain and in the United States, 3 turbo-roundabout corridors in the Netherlands, and 1 mixed roundabout/traffic-lights/stop-controlled corridor in Portugal. Data for approximately 2,000 km of road coverage over the course of 50 h have been collected. Subsequently, a microscopic platform of traffic (VISSIM), emissions (Vehicle Specific Power – VSP) and safety (Surrogate Safety Assessment Model – SSAM) was introduced to faithful reproduce site-specific operations and to examine different alternative scenarios. The main research findings showed that the spacing between intersections influenced vehicles acceleration-deceleration patterns and emissions. In contrast, the deflection angle at the entrances (element that impacts emissions on isolated roundabouts) impacted slightly on the spatial distribution of emissions. It was also found that the optimal crosswalk locations along mid-block sections in roundabout corridor was generally controlled by spacing, especially in the case of short spacing between intersections (< 200 m). The implementation of turbo-roundabout in series along corridors increased emissions compared to conventional two-lane roundabout corridors (1-5%, depending on the pollutant). By changing the location of a roundabout or turbo-roundabout to increase spacing in relation to upstream/downstream intersection resulted in an improvement of corridor emissions. Under conditions of high through traffic and unbalanced traffic flows between main roads and minor roads, vehicles along roundabout corridors produced fewer emissions (~5%) than did vehicles along signalized corridors, but they emitted more gases (~12%) compared to a corridor with stop-controlled intersections. This research contributed to the current state-of-art by proving a full comprehension about the operational and geometric benefits and limitations of roundabout corridors. It also established correlations between geometric variable of corridors (spacing), crosswalk locations or traffic streams, and delay, and CO2, CO, NOX or HC variables. With this research, it has been demonstrated that the implementation of a given intersection form within a corridor focused on minimizing CO2 may not be translated to other variables such as CO or NOX. Therefore, the develop methodology is a decision supporting tool capable of assessing and selecting suitable traffic controls according the site-specific needs.Estudos anteriores demonstram que os desempenhos operacional, ambiental e ao nível da segurança para os peões de uma rotunda dependem das suas características geométricas e dos fluxos de tráfego e de peões. Porém, a implementação de uma rotunda pode traduzir-se numa avaliação de compromisso entre as variáveis da capacidade, emissões de poluentes e segurança. Para além disso, a informação relativa às potencialidades de rotundas interdependentes ao longo de corredores é diminuta. Assim, esta tese de doutoramento centra-se na compreensão dos impactos no desempenho do tráfego, emissões e segurança dos peões inerentes ao funcionamento de corredores de rotundas. Uma das contribuições deste trabalho é o desenvolvimento de uma metodologia capaz de avaliar as características geométricas e operacionais dos corredores de forma integrada. Os principais objetivos desta tese são: 1) analisar o impacto dos elementos geométricos dos corredores de rotundas em termos dos perfis de aceleração e das emissões; 2) investigar as principais diferenças na distribuição espacial das emissões entre rotundas isoladas e em corredores; 3) comparar os desempenhos operacional e ambiental de corredores com diferentes tipos de interseções tais como rotundas convencionais, turbo-rotundas, cruzamentos semaforizados e interseções prioritárias; e 4) dimensionar um corredor de modo a otimizar o atraso dos veículos, e emissões de poluentes globais (dióxido de carbono – CO2) e locais (monóxido de carbono – CO, óxidos de azoto – NOx e hidrocarbonetos – HC). O trabalho de monitorização experimental consistiu na recolha de dados da dinâmica do veículo, e volumes de tráfego e pedonais. Para tal, foram selecionados 12 corredores com rotundas convencionais em Portugal, Espanha e Estados Unidos da América, 3 corredores com turbo-rotundas na Holanda e ainda um corredor misto com rotundas, sinais luminosos e interseções prioritárias em Portugal. No total foram recolhidos aproximadamente 2000 km de dados da dinâmica do veículo, num total de 50 h. Foi utilizada uma plataforma de modelação microscópica de tráfego (VISSIM), emissões (Vehicle Specific Power – VSP) e segurança (Surrogate Safety Assessment Model – SSAM) de modo a replicar as condições de tráfego locais e avaliar cenários alternativos. Os resultados mostraram que o espaçamento entre interseções teve um impacto significativo nos perfis de aceleração e emissões. No entanto, tal não se verificou para o ângulo de deflexão de entrada (elemento fulcral nos níveis de emissões em rotundas isoladas), nomeadamente nos casos em que as rotundas adjacentes estavam próximas (< 200 m). A implementação de corredores de turbo-rotundas conduziu ao aumento das emissões face a um corredor convencional de rotundas com duas vias (1-5%, dependendo do poluente). A relocalização de uma rotunda ou turbo-rotunda no interior do corredor, de modo a aumentar o espaçamento em relação a uma interseção a jusante e/ou a montante, levou a uma melhoria das emissões do corredor. Conclui-se também que em condições de elevado tráfego de atravessamento e não uniformemente distribuído entre as vias principais e secundárias, os veículos ao longo de um corredor com rotundas produziram menos emissões (~5%) face a um corredor com semáforos, mas emitiram mais gases (~12%) comparativamente a um corredor de interseções prioritárias. Esta investigação contribuiu para o estado de arte através da análise detalhada dos benefícios e limitações dos corredores de rotundas tanto ao nível geométrico como ao nível operacional. Adicionalmente, estabeleceram-se várias correlações entre variáveis geométricas do corredor (espaçamento), localização das passadeiras e volume de tráfego, o atraso, e emissões de CO2, CO, NOX e HC. Demonstrou-se ainda que a implementação de uma interseção ao longo do corredor com a finalidade de minimizar o CO2 pode não resultar na melhoria de outras variáveis tais como o CO ou NOX. Esta metodologia serve como apoio à decisão e, portanto, permite avaliar o tipo de interseção mais adequado de acordo com as especificidades de cada local.Programa Doutoral em Engenharia Mecânic

    Capacity-Related Driver Behavior on Modern Roundabouts Built on High-Speed Roads

    Get PDF
    The objective of this thesis was to investigate the factors that affect capacity-related driver behavior on modern roundabouts built on high-speed roads. The capacity of roundabouts is strongly affected by the behavior of drivers as represented by critical headway (critical gap) and follow-up headway (follow-up time). The effects of heavy vehicles (single-unit truck, bus, and semi-trailer) and area type (rural or urban) on roundabout capacity were investigated by comparing the critical headways for roundabouts located on high-speed and low-speed roads. The effects of nighttime conditions (in the presence of street lighting) were also considered. Data were collected using the Purdue Mobile Traffic Lab at four roundabouts built on state roads located in Indiana. The data were used to estimate a Probit model of the critical headways and their factors, as well as the follow-up headways. The findings revealed that drivers of heavy vehicles accepted critical headways that were 1.1 seconds longer than those of the passenger car drivers; on roundabouts built on high-speed roads in rural areas, drivers accepted critical headways that were 0.6 seconds longer than on roundabouts on low-speed roads in urban areas; and in nighttime conditions, drivers accepted critical headways that were 0.6 seconds longer than in daylight conditions. In addition, it was determined that the gap-acceptance parameters for a single-lane roundabout on a low-speed state road were less than those of the National Cooperative Highway Research Program (NCHRP) Report 572 average estimated values - which are currently incorporated into Highway Capacity Manual (HCM) 2010, resulting on average in 30% higher capacity for Indiana conditions. In contrast, the estimated critical headway was larger for dual-lane roundabouts on high-speed state roads, resulting in 15% reduced capacity (for medium to high circulatory traffic volumes) for Indiana conditions. The findings of this thesis are intended to improve capacity estimation for the roundabouts planned on Indiana state roads. The HCM 2010 capacity equations were updated with the new estimated gap-acceptance parameters for Indiana. The findings contribute to better understanding of the roundabout capacity factors

    Heavy Vehicle Rollover Propensity At Roundabouts On Highspeed Roads

    Get PDF
    There is a recent trend of building roundabouts on high-speed roads, often with significant heavy vehicle traffic. With the increased presence of trucks on roundabouts, the issue of rollover has become a concern. Geometric features that allow excessive speed on the approach and entry have been connected to rollover, as well as sudden changes in crossfall and radius. However, the effect on the rollover threshold of changing the roundabout\u27s circulatory superelevation is not fully understood. The impact of aggressive driving behaviors, as displayed by high driver speed far from the roundabout, as well as errors that are manifested by the driver maintaining excessive speed in close proximity to the roundabout, should also be further examined and quantified. This thesis describes a rollover model more generalized than those previously used for design considerations. It accounts for the intricacies of semi-trailers and other heavy vehicles by incorporating both complex trailer paths that do not conform to the road alignment and the resulting vehicle tilt. The proposed model is applied in the aforementioned scenarios after introducing delta v - the difference between the critical rollover speed determined from the model and the actual speed. In the comparison of inward vs. outward circulatory superelevation, the study revealed that the 2% inward scenario produces a 1.5-1.9 mile per hour higher (depending on the assumed trailer loading) delta v than 2% outward. As expected, the difference becomes greater (1.8-2.4 mph) when the inward superelevation is increased to 3%. However, these differences are too weak to recommend the inward design given its other shortcomings. The study also showed that aggressive driver behavior, as exemplified by speed far from the roundabout, does not have a significant effect on the critical rollover threshold at the roundabout circulation. However, drivers who maintain high speeds in close proximity to the roundabout do show a greater tendency to encroach on the critical rollover speed at the roundabout circulation. Properly placed measures such as Variable Message Signs (VMS) can be utilized to help slow these drivers down. Better driver training is also recommended. A final accommodation measure, based on a review of literature and crash reports, involves improvement of the truck apron design so they are easily traversable and more conspicuous

    Roundabouts: Traffic Simulations of Connected and Automated Vehicles—A State of the Art

    Get PDF
    The paper deals with traffic simulation within roundabouts when both “connected and automated vehicles” (CAVs) and human-driven cars are present. The aim is to present the past, current and future research on CAVs running into roundabouts within the Cooperative, Connected and Automated Mobility (CCAM) framework. Both microscopic traffic simulations and virtual reality simulations by dynamic driving simulators will be considered. The paper is divided into five parts. At first, the literature is analysed using the Systematic Literature Review (SLR) methodology based on Scopus database. Secondly, the influence of CAVs on roundabout-specific design features and configuration is analysed. Gap-acceptance models used to define the capacity of the roundabout, one of its most important key performance indicators, are also presented. Third, the most common simulation software are described and analysed in terms of traffic demand implementation. Then the communication approaches and path management algorithms are studied. An example is proposed on the integration of microscopic traffic simulations and dynamic driving simulators virtual reality simulations. Finally, car following models suitable for roundabout traffic are discussed. There is still a gap between simulations and actual experience. There are reasonable doubts on how modelling and optimizing CAVs’ behaviour into roundabouts in view of CCAM. It seems that Cooperative, Connected and Automated Vehicles (CCAVs), more than simply Connected and Automated Vehicles (CAVs), could optimise traffic flow, safety and driving comfort within the roundabout. A very promising technology for traffic simulation within the roundabout seems the one based on dynamic driving simulators

    Methodological Frontier in Operational Analysis for Roundabouts: A Review

    Get PDF
    Several studies and researches have shown that modern roundabouts are safe and effective as engineering countermeasures for traffic calming, and they are now widely used worldwide. The increasing use of roundabouts and, more recently, turbo and flower roundabouts, has induced a great variety of experiences in the field of intersection design, traffic safety, and capacity modeling. As for unsignalized intersections, which represent the starting point to extend knowledge about the operational analysis to roundabouts, the general situation in capacity estimation is still characterized by the discussion between gap acceptance models and empirical regression models. However, capacity modeling must contain both the analytical construction and then solution of the model, and the implementation of driver behavior. Thus, issues on a realistic modeling of driver behavior by the parameters that are included into the models are always of interest for practitioners and analysts in transportation and road infrastructure engineering. Based on these considerations, this paper presents a literature review about the key methodological issues in the operational analysis of modern roundabouts. Focus is made on the aspects associated with the gap acceptance behavior, the derivation of the analytical-based models, and the calculation of parameters included into the capacity equations, as well as steady-state and non-steady-state conditions and uncertainty in entry capacity estimation. At last, insights on future developments of the research in this field of investigation will be also outlined

    Estimation of Passenger Car Equivalents for Two-Lane and Turbo Roundabouts Using AIMSUN

    Get PDF
    The paper addresses issues related to Passenger Car Equivalents (PCEs) at roundabouts. Compared to other road units, the curvilinear elements of roundabout geometric design may impose greater constraints on vehicular trajectories and have a significant effect on the swept envelope of heavy vehicles. Specifically, the aim of the paper is to present the methodological approach which used traffic microsimulation to estimate PCEs. Focus is made on a case study which considered the conversion of a two-lane roundabout into a basic turbo roundabout with comparable size. Empirical capacity functions for both roundabouts were derived as target values to which simulated capacities by lane were compared. In order to estimate the PCEs a criterion of equivalence based on the amount of capacity used by cars and heavy vehicles is presented. AIMSUN allowed to simulate traffic conditions with different percentages of heavy vehicles at both roundabouts. Thus, variation of traffic conditions where mixed fleets operate was explored. A comparison was made between the PCEs estimated for each entry lane characterized by similar mechanism of entry maneuver. The results indicated there is a need to distinguish the impact of heavy vehicles when operational performance of a two-lane roundabout or a turbo-roundabout should be examined. Especially when circulating flows increase, a higher PCE value is expected than the value that the Highway Capacity Manual proposes for roundabouts
    • …
    corecore