26,996 research outputs found

    A New Approach to Analyzing Patterns of Collaboration in Co-authorship Networks - Mesoscopic Analysis and Interpretation

    Full text link
    This paper focuses on methods to study patterns of collaboration in co-authorship networks at the mesoscopic level. We combine qualitative methods (participant interviews) with quantitative methods (network analysis) and demonstrate the application and value of our approach in a case study comparing three research fields in chemistry. A mesoscopic level of analysis means that in addition to the basic analytic unit of the individual researcher as node in a co-author network, we base our analysis on the observed modular structure of co-author networks. We interpret the clustering of authors into groups as bibliometric footprints of the basic collective units of knowledge production in a research specialty. We find two types of coauthor-linking patterns between author clusters that we interpret as representing two different forms of cooperative behavior, transfer-type connections due to career migrations or one-off services rendered, and stronger, dedicated inter-group collaboration. Hence the generic coauthor network of a research specialty can be understood as the overlay of two distinct types of cooperative networks between groups of authors publishing in a research specialty. We show how our analytic approach exposes field specific differences in the social organization of research.Comment: An earlier version of the paper was presented at ISSI 2009, 14-17 July, Rio de Janeiro, Brazil. Revised version accepted on 2 April 2010 for publication in Scientometrics. Removed part on node-role connectivity profile analysis after finding error in calculation and deciding to postpone analysis

    Association between co-authorship network and scientific productivity and impact indicators in academic medical research centers: A case study in Iran

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We aimed to examine the co-authorship networks in three successful Iranian academic research centers, in order to find the association between the scientific productivity and impact indicators with network features in a case study.</p> <p>Methods</p> <p>We searched for English articles of the three research centers. We drew co-authorship maps of each center and calculated social network measures.</p> <p>Results</p> <p>The collaboration networks in centers shared many structural features, including a "star-like" pattern of relations. Centers with more successful scientific profile showed denser and more cooperative networks. Key figures in each center were interviewed for their understandings of the reasons for the emergence of these patterns.</p> <p>Conclusion</p> <p>Star shape network structure and dependency on a single big member is a common feature observed in our case study. Scientific output measures correlate with the network structure of research centers. Network analysis seems a useful method to explore the subtle scientific contexts in research organizations.</p

    git2net - Mining Time-Stamped Co-Editing Networks from Large git Repositories

    Full text link
    Data from software repositories have become an important foundation for the empirical study of software engineering processes. A recurring theme in the repository mining literature is the inference of developer networks capturing e.g. collaboration, coordination, or communication from the commit history of projects. Most of the studied networks are based on the co-authorship of software artefacts defined at the level of files, modules, or packages. While this approach has led to insights into the social aspects of software development, it neglects detailed information on code changes and code ownership, e.g. which exact lines of code have been authored by which developers, that is contained in the commit log of software projects. Addressing this issue, we introduce git2net, a scalable python software that facilitates the extraction of fine-grained co-editing networks in large git repositories. It uses text mining techniques to analyse the detailed history of textual modifications within files. This information allows us to construct directed, weighted, and time-stamped networks, where a link signifies that one developer has edited a block of source code originally written by another developer. Our tool is applied in case studies of an Open Source and a commercial software project. We argue that it opens up a massive new source of high-resolution data on human collaboration patterns.Comment: MSR 2019, 12 pages, 10 figure

    Studying the Emerging Global Brain: Analyzing and Visualizing the Impact of Co-Authorship Teams

    Full text link
    This paper introduces a suite of approaches and measures to study the impact of co-authorship teams based on the number of publications and their citations on a local and global scale. In particular, we present a novel weighted graph representation that encodes coupled author-paper networks as a weighted co-authorship graph. This weighted graph representation is applied to a dataset that captures the emergence of a new field of science and comprises 614 papers published by 1,036 unique authors between 1974 and 2004. In order to characterize the properties and evolution of this field we first use four different measures of centrality to identify the impact of authors. A global statistical analysis is performed to characterize the distribution of paper production and paper citations and its correlation with the co-authorship team size. The size of co-authorship clusters over time is examined. Finally, a novel local, author-centered measure based on entropy is applied to determine the global evolution of the field and the identification of the contribution of a single author's impact across all of its co-authorship relations. A visualization of the growth of the weighted co-author network and the results obtained from the statistical analysis indicate a drift towards a more cooperative, global collaboration process as the main drive in the production of scientific knowledge.Comment: 13 pages, 9 figure

    Communities and patterns of scientific collaboration in Business and Management

    Get PDF
    This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full pape

    Community structure and patterns of scientific collaboration in Business and Management

    Get PDF
    This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full pape

    Communities and patterns of scientific collaboration

    Get PDF
    This is the author's accepted version of this article deposited at arXiv (arXiv:1006.1788v2 [physics.soc-ph]) and subsequently published in Scientometrics October 2011, Volume 89, Issue 1, pp 381-396. The final publication is available at link.springer.com http://link.springer.com/article/10.1007%2Fs11192-011-0439-1Author's note: 17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full paper17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full paper version)17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full paper version)17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full paper version)17 pages. To appear in special edition of Scientometrics. Abstract on arXiv meta-data a shorter version of abstract on actual paper (both in journal and arXiv full paper version)This paper investigates the role of homophily and focus constraint in shaping collaborative scientific research. First, homophily structures collaboration when scientists adhere to a norm of exclusivity in selecting similar partners at a higher rate than dissimilar ones. Two dimensions on which similarity between scientists can be assessed are their research specialties and status positions. Second, focus constraint shapes collaboration when connections among scientists depend on opportunities for social contact. Constraint comes in two forms, depending on whether it originates in institutional or geographic space. Institutional constraint refers to the tendency of scientists to select collaborators within rather than across institutional boundaries. Geographic constraint is the principle that, when collaborations span different institutions, they are more likely to involve scientists that are geographically co-located than dispersed. To study homophily and focus constraint, the paper will argue in favour of an idea of collaboration that moves beyond formal co-authorship to include also other forms of informal intellectual exchange that do not translate into the publication of joint work. A community-detection algorithm is applied to the co-authorship network of the scientists that submitted in Business and Management in the 2001 UK RAE. While results only partially support research-based homophily, they indicate that scientists use status positions for discriminating between potential partners by selecting collaborators from institutions with a rating similar to their own. Strong support is provided in favour of institutional and geographic constraints. Scientists tend to forge intra-institutional collaborations; yet, when they seek collaborators outside their own institutions, they tend to select those who are in geographic proximity

    An exploratory social network analysis of academic research networks

    Get PDF
    For several decades, academics around the world have been collaborating with the view to support the development of their research domain. Having said that, the majority of scientific and technological policies try to encourage the creation of strong inter-related research groups in order to improve the efficiency of research outcomes and subsequently research funding allocation. In this paper, we attempt to highlight and thus, to demonstrate how these collaborative networks are developing in practice. To achieve this, we have developed an automated tool for extracting data about joint article publications and analyzing them from the perspective of social network analysis. In this case study, we have limited data from works published in 2010 by England academic and research institutions. The outcomes of this work can help policy makers in realising the current status of research collaborative networks in England
    • …
    corecore