389 research outputs found

    Adaptive Modulation and Coding and Cooperative ARQ in a Cognitive Radio System

    Full text link
    In this paper, a joint cross-layer design of adaptive modulation and coding (AMC) and cooperative automatic repeat request (C-ARQ) scheme is proposed for a secondary user in a shared-spectrum environment. First, based on the statistical descriptions of the channel, closed-form expressions of the average spectral efficiency (SE) and the average packet loss rate (PLR) are presented. Then, the cross-layer scheme is designed, with the aim of maximizing the average SE while maintaining the average PLR under a prescribed level. An optimization problem is formed, and a sub-optimal solution is found: the target packet error rates (PER) for the secondary system channels are obtained and the corresponding sub-optimal AMC rate adaptation policy is derived based on the target PERs. Finally, the average SE and the average PLR performance of the proposed scheme are presented

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Energy-Efficient Cooperative Cognitive Relaying Schemes for Cognitive Radio Networks

    Full text link
    We investigate a cognitive radio network in which a primary user (PU) may cooperate with a cognitive radio user (i.e., a secondary user (SU)) for transmissions of its data packets. The PU is assumed to be a buffered node operating in a time-slotted fashion where the time is partitioned into equal-length slots. We develop two schemes which involve cooperation between primary and secondary users. To satisfy certain quality of service (QoS) requirements, users share time slot duration and channel frequency bandwidth. Moreover, the SU may leverage the primary feedback message to further increase both its data rate and satisfy the PU QoS requirements. The proposed cooperative schemes are designed such that the SU data rate is maximized under the constraint that the PU average queueing delay is maintained less than the average queueing delay in case of non-cooperative PU. In addition, the proposed schemes guarantee the stability of the PU queue and maintain the average energy emitted by the SU below a certain value. The proposed schemes also provide more robust and potentially continuous service for SUs compared to the conventional practice in cognitive networks where SUs transmit in the spectrum holes and silence sessions of the PUs. We include primary source burstiness, sensing errors, and feedback decoding errors to the analysis of our proposed cooperative schemes. The optimization problems are solved offline and require a simple 2-dimensional grid-based search over the optimization variables. Numerical results show the beneficial gains of the cooperative schemes in terms of SU data rate and PU throughput, average PU queueing delay, and average PU energy savings

    Green Cellular Networks: A Survey, Some Research Issues and Challenges

    Full text link
    Energy efficiency in cellular networks is a growing concern for cellular operators to not only maintain profitability, but also to reduce the overall environment effects. This emerging trend of achieving energy efficiency in cellular networks is motivating the standardization authorities and network operators to continuously explore future technologies in order to bring improvements in the entire network infrastructure. In this article, we present a brief survey of methods to improve the power efficiency of cellular networks, explore some research issues and challenges and suggest some techniques to enable an energy efficient or "green" cellular network. Since base stations consume a maximum portion of the total energy used in a cellular system, we will first provide a comprehensive survey on techniques to obtain energy savings in base stations. Next, we discuss how heterogeneous network deployment based on micro, pico and femto-cells can be used to achieve this goal. Since cognitive radio and cooperative relaying are undisputed future technologies in this regard, we propose a research vision to make these technologies more energy efficient. Lastly, we explore some broader perspectives in realizing a "green" cellular network technologyComment: 16 pages, 5 figures, 2 table
    • …
    corecore