3 research outputs found

    Architecture for integrating vertical customer programmability control of network functions and connectivity in a slice-as-a-service schema

    Get PDF
    Network slicing will permit offering to vertical customers tailored end-to-end logical networks in an on-demand fashion, on top of a common telecom infrastructure, achieving a Slices-as-a-Service (SlaaS) business model. This is possible due to the progressive introduction of network softwarization techniques, such as programmability and virtualization, into existing operational networks, enabling dynamic and flexible provision of slices. Those vertical customers could require the control not only of the network functions composing the end-to-end service, but also of the connectivity among them, e.g., for influencing the paths for steering traffic among function instances. However, this can be problematic since decisions from one vertical customer can collide with decisions from others. One aspect not yet sufficiently investigated is how to permit vertical customers to jointly control the service functions and the underlay connectivity, in such a way that could operate the allocated slice as if it was actually a dedicated network entirely for them. This paper explores some architectural proposition in this respect illustrated with some potential use cases and it provides an example of the provision of SlaaS for a vertical customer.This work has been partly funded by the European Commission through the projects 5G-PPP H2020 5GROWTH (Grant Agreement No 856709), EU-TW 5G-DIVE (Grant Agreement No 859881) and by the Spanish AURORAS (RTI2018-099178-B-I00) project. This information reflects the consortia views, but neither the consortia nor the European Commission are liable for any use that may be done of the information contained therein

    Progressive introduction of network softwarization in operational telecom networks: advances at architectural, service and transport levels

    Get PDF
    Technological paradigms such as Software Defined Networking, Network Function Virtualization and Network Slicing are altogether offering new ways of providing services. This process is widely known as Network Softwarization, where traditional operational networks adopt capabilities and mechanisms inherit form the computing world, such as programmability, virtualization and multi-tenancy. This adoption brings a number of challenges, both from the technological and operational perspectives. On the other hand, they provide an unprecedented flexibility opening opportunities to developing new services and new ways of exploiting and consuming telecom networks. This Thesis first overviews the implications of the progressive introduction of network softwarization in operational networks for later on detail some advances at different levels, namely architectural, service and transport levels. It is done through specific exemplary use cases and evolution scenarios, with the goal of illustrating both new possibilities and existing gaps for the ongoing transition towards an advanced future mode of operation. This is performed from the perspective of a telecom operator, paying special attention on how to integrate all these paradigms into operational networks for assisting on their evolution targeting new, more sophisticated service demands.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Eduardo Juan Jacob Taquet.- Secretario: Francisco Valera Pintor.- Vocal: Jorge López Vizcaín
    corecore