105 research outputs found

    A deep representation for depth images from synthetic data

    Full text link
    Convolutional Neural Networks (CNNs) trained on large scale RGB databases have become the secret sauce in the majority of recent approaches for object categorization from RGB-D data. Thanks to colorization techniques, these methods exploit the filters learned from 2D images to extract meaningful representations in 2.5D. Still, the perceptual signature of these two kind of images is very different, with the first usually strongly characterized by textures, and the second mostly by silhouettes of objects. Ideally, one would like to have two CNNs, one for RGB and one for depth, each trained on a suitable data collection, able to capture the perceptual properties of each channel for the task at hand. This has not been possible so far, due to the lack of a suitable depth database. This paper addresses this issue, proposing to opt for synthetically generated images rather than collecting by hand a 2.5D large scale database. While being clearly a proxy for real data, synthetic images allow to trade quality for quantity, making it possible to generate a virtually infinite amount of data. We show that the filters learned from such data collection, using the very same architecture typically used on visual data, learns very different filters, resulting in depth features (a) able to better characterize the different facets of depth images, and (b) complementary with respect to those derived from CNNs pre-trained on 2D datasets. Experiments on two publicly available databases show the power of our approach

    Object Detection from a Vehicle Using Deep Learning Network and Future Integration with Multi-Sensor Fusion Algorithm

    Get PDF
    Accuracy in detecting a moving object is critical to autonomous driving or advanced driver assistance systems (ADAS). By including the object classification from multiple sensor detections, the model of the object or environment can be identified more accurately. The critical parameters involved in improving the accuracy are the size and the speed of the moving object. All sensor data are to be used in defining a composite object representation so that it could be used for the class information in the core object’s description. This composite data can then be used by a deep learning network for complete perception fusion in order to solve the detection and tracking of moving objects problem. Camera image data from subsequent frames along the time axis in conjunction with the speed and size of the object will further contribute in developing better recognition algorithms. In this paper, we present preliminary results using only camera images for detecting various objects using deep learning network, as a first step toward multi-sensor fusion algorithm development. The simulation experiments based on camera images show encouraging results where the proposed deep learning network based detection algorithm was able to detect various objects with certain degree of confidence. A laboratory experimental setup is being commissioned where three different types of sensors, a digital camera with 8 megapixel resolution, a LIDAR with 40m range, and ultrasonic distance transducer sensors will be used for multi-sensor fusion to identify the object in real-time

    Indoor Semantic Segmentation using depth information

    Full text link
    This work addresses multi-class segmentation of indoor scenes with RGB-D inputs. While this area of research has gained much attention recently, most works still rely on hand-crafted features. In contrast, we apply a multiscale convolutional network to learn features directly from the images and the depth information. We obtain state-of-the-art on the NYU-v2 depth dataset with an accuracy of 64.5%. We illustrate the labeling of indoor scenes in videos sequences that could be processed in real-time using appropriate hardware such as an FPGA.Comment: 8 pages, 3 figure

    Hyper parameters selection for image classification in convolutional neural networks

    Get PDF

    Understanding Deep Architectures using a Recursive Convolutional Network

    Full text link
    A key challenge in designing convolutional network models is sizing them appropriately. Many factors are involved in these decisions, including number of layers, feature maps, kernel sizes, etc. Complicating this further is the fact that each of these influence not only the numbers and dimensions of the activation units, but also the total number of parameters. In this paper we focus on assessing the independent contributions of three of these linked variables: The numbers of layers, feature maps, and parameters. To accomplish this, we employ a recursive convolutional network whose weights are tied between layers; this allows us to vary each of the three factors in a controlled setting. We find that while increasing the numbers of layers and parameters each have clear benefit, the number of feature maps (and hence dimensionality of the representation) appears ancillary, and finds most of its benefit through the introduction of more weights. Our results (i) empirically confirm the notion that adding layers alone increases computational power, within the context of convolutional layers, and (ii) suggest that precise sizing of convolutional feature map dimensions is itself of little concern; more attention should be paid to the number of parameters in these layers instead

    Clustering Learning for Robotic Vision

    Get PDF
    We present the clustering learning technique applied to multi-layer feedforward deep neural networks. We show that this unsupervised learning technique can compute network filters with only a few minutes and a much reduced set of parameters. The goal of this paper is to promote the technique for general-purpose robotic vision systems. We report its use in static image datasets and object tracking datasets. We show that networks trained with clustering learning can outperform large networks trained for many hours on complex datasets.Comment: Code for this paper is available here: https://github.com/culurciello/CL_paper1_cod

    Using Neural Networks for Image Classification

    Get PDF
    This paper will focus on applying neural network machine learning methods to images for the purpose of automatic detection and classification. The main advantage of using neural network methods in this project is its adeptness at fitting non­linear data and its ability to work as an unsupervised algorithm. The algorithms will be run on common, publically available datasets, namely the MNIST and CIFAR­10, so that our results will be easily reproducible
    • …
    corecore