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Abstract—Cognitive image processing is made possible by the 

availability of faster and cheaper memories, increased processing 

power of multicore processors and the explosive growth in visual 

data generation. Object classification remains an active research 

area with rapid advancements. The recent advances in deep 

neural networks are providing better than expected results for 

image classification. The process involves training models with 

large labelled datasets to learn the underlying features from 

various image classes to support cognitive inferences on the test 

data. By training on large annotated image datasets contextual 

and semantic information can be automatically extracted from 

the images.  An important determinant of better results is the 

choice of hyper parameters which is difficult to get right. In this 

paper we empirically investigate the effect of selected hyper 

parameters of a convolutional neural network on CIFAR-10 

dataset and provide results to demonstrate their effect and 

importance for image classification.  

Keywords—deep learning; cognitive image processing; neural 

networks; hyper parameters; convolution 

I.  INTRODUCTION 

Vision is the predominant sense amongst humans. About 
80% of the brain is used for visual data processing [1]. The 
increased use of Internet of Things (IoT) [2], social, web and 
mobile applications have resulted in an increased emphasis on 
visual communications. According to Facebook, in 2016 more 
than 265 million new monthly active users were added. 
Similarly, 300 hours of videos are uploaded to YouTube, each 
hour. The images acquired through these modalities are 
generating large data sets that can be usefully mined to 
generate feature rich, enhanced images. 

The vast volumes of images and videos are beyond the 
cognitive ability of humans to manage [1]. The exponential 
increase in images generated and stored requires intelligent 
processing algorithms to be developed to classify the content. 
The traditional pixel-based image processing paradigm needs 
to pave the way for the cognitive image processing paradigm 
[1]. 

Cognitive image processing is deeply rooted in 
mathematical concepts and exists at the convergence of 
computer vision, machine learning and statistics. The objective 
is for a machine to mimic human like cognitive visual  
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Fig. 1. (a) Biological Neuron  (b) Artitifical Neural Network (ANN).  

abilities [3]. Deep learning algorithms are complex to develop, 
train and evaluate. 

A neural net [4] with 60 million parameters and 650,000 
neurons took a long time to train on ImageNet [5], in order to 
classify 1.2 million images. Cognitive image processing 
techniques have been applied to a vast array of application 
areas. Biological neurons (Fig 1a) have inspired the Artificial 
Neural Networks (ANN) (Fig1b) interconnections and 
activations [6]. 

Cognitive vision focuses on developing interoperable, 

robust, resilient and adaptable systems, with the ability to learn, 

evaluate alternatives, analyse, interpret, apply to new contexts 

and communicate with other systems [7]. The increased 

research interest in neural networks is due to the promising 



results obtained for ImageNet competitions [4]. The two 

leading types are the Convolutional Neural Networks (CNN) 

and Recurrent Neural Networks (RNN). Cognitive vision can 

support the development of systems that are more robust, 

flexible and smarter. [8] has demonstrated the application of 

cognitive vision in many areas (surveillance, industrial 

inspection, stock photo databases, industrial robotics, film, TV 

and entertainment, life sciences and aerospace). Cognitive 

image processing has been applied to Standard Platform 

League (SPL) game scenarios for goal and ball detection [9]. 

The process of describing the cognitive environment to the 

model is a complex problem. To overcome the limitation, 

cognitive models were applied for object detection in two 

games, 3D driver and Mars rover [10]. CNNs have been used 

for large image datasets [4], [11]. CNN have also been applied 

for video classification [12]. The application of deep learning 

for different medical image modalities is provided in [13]. 

 An important aspect of the neural networks performance is 
the hyper parameters or the model’s parameters, and their 
effect on the recognition results. This information is critical to 
design and develop efficient models. This paper describes the 
CNN’s hyper parameters in detail and investigates the effects 
of changes to selected hyper parameters to arrive at better 
choices. 

 The effect of some hyper parameters for activation, such as 
Rectified Linear unit (ReLU) and Sigmoid were investigated in 
[14]. However, our focus is on investigating a large selection of 
important hyper parameters for learning rates activation layer, 
momentum, and batch size while at the same time making use 
of regularization (dropout) [4], [15] and batch normalization 
[16]. Therefore a simple architecture has been chosen that lets 
us easily investigate the effect of parameter change on 
improving image classification results. We do not optimize the 
hyper parameters through grid search [17] but investigate one 
parameter at a time for better results. 

The paper makes the following contributions: 

 describing the CNN architecture and the importance of 
hyper parameters 

 investigating the effect of important hyper parameters 
on the model’s accuracy to help researchers to make 
informed choices. 

Section II outlines the relevant key concepts underpinning 
our approach. The use of CNN is provided in Section III. The 
system hyper parameters are described in Section IV.  The 
system model and results are provided in Section V and VI, 
with the conclusion in Section VII. 

II. BACKGROUND 

A. Advancements in Computer Vision 

Computer vision technologies for object recognition have 
rapidly evolved and new methodologies and techniques with 
improved results have been proposed [4], [5]. The current re-
emergence of neural networks for computer vision applications 
is attributed to [5], [18] and there have been improvements. 

Although the biological systems, particularly vision process are 
not fully understood, the current focus yields promising results. 
ImageNet Large Scale Recognition Challenge (ILSVRC) [19] 
has been running since 2009 that provides a common platform 
for comparing computer vision algorithms for object detection 
and classification [19]. 

B. Neural Network and why they work  

Artificial Neural Networks (ANNs) are modelled on the 
human nervous system [3]. ANNs originated in neuroscience in 
1943 [20]. ANNs need computational power and large volumes 
of data to be trained before they can be successfully used. It 
can learn from any mathematical relation between the input 
and output [3]. For supervised learning, we need to train the 
ANN by providing a large number of labelled true and false 
examples, before good results can be obtained. 

A deep neural network utilizes many intermediate or hidden 
layers. The depth increases interconnections and complexity of 
nodes. The initial layers work on low level features, lines, 
circles etc., whereas the deeper layers work to higher or 
complex features, until the whole image gets recognized [3]. 
Such systems can perform at the same or better levels than 
humans [3]. 

C. Advanced Neural Architectures  

Of particular interest to us, and which also provide good 
results are Convolutional Neural Networks (CNN), and 
Recurrent Neural Network (RNN). CNNs are more suitable for 
spatial data and take a fixed size input and generate fixed size 
outputs whereas RNNs can handle different input/output sizes 
and use time-series data. Although RNNs have been 
successfully applied to hand writing recognition, some 
variations were also applied to images. However CNNs, due to 
their very nature, are more suitable for object recognition 
exploiting the spatial dimensions of height and width.  

The basic ANNs have been refined and combined to yield 
many different algorithms each inspired by a different 
philosophy. More complex models have been proposed by 
combining both CNN and RNN [21], [22], [23], [24]. 

III. CNN MODEL AND LAYERS 

CNNs are better suitable for image classification than any 
other neural network. They have fewer connections and 
parameters compared to standard feedforward networks and are 
thus easier to train [4]. These were brought to prominence 
through LeNet [18] which used CNNs for the first time for 
character recognition. Improved CNN architectures have 
provided state-of-the-art object recognition results on large 
datasets [21]. CNN is a type of feed-forward artificial neural 
network which requires minimal preprocessing. The 
connectivity pattern of CNN neurons is inspired by the animal 
visual cortex [6]. The use of Graphical Processing Unit (GPU) 
has enabled the training and testing of CNNs for large datasets 
[21]. The first GPU implementation of CNN [4] to win the 
ImageNet competition was in 2012 and its winning top-5 error 
rate was 15.3% whereas the second best was 26.2%. A CNN 
comprises of many layers that are used to create an architecture 
for a sequential processing pipeline.



 

Fig. 2. A Generalized Convolutional Neural Network (CNN) architecture.  

 

A. Generalized CNN Architecture 

Although a neural network can learn the image features 
autonomously, the model’s parameters need to be defined for 
better results.  A generalized CNN architecture is shown in Fig 
2. We provide details of the layer types and hyper parameters 
needed to identify the depth of the network, and other 
parameters. The layers between the input and output layers are 
termed as hidden layers and a CNN can be designed to 
intersperse the different types of layers. The depth of the CNN 
is equivalent to its hidden layers. 

B. Convolution Layer 

The convolution layers apply a filtering process to the 
image to extract the relevant features. In 2D convolution, a 2D 
mask or filter is moved over the image, starting at the top left 
and ending at the bottom right. At each position the sum of the 
products of the image and mask parameters is obtained and 
replaces the image pixel value at the mask center. The 
important parameters at this stage are the filter size, dimension 
and stride. 

C. Activation Layer  

After the convolutional layer, an activation layer is added 

to introduce a non-linearity to the otherwise linear operations 

in convolution. The common non-linear functions are ReLU, 

Sigmoid and Tanh. Comparisons between the different 

activation functions found ReLU to perform better overall 

[14]. Recently however, some variants of ReLU have also 

been proposed, such as Leaky ReLU (LeakyReLU) [25] and 

Parametric RELU (PReLU) [26]. 

D. Pooling layers 

The purpose of the pooling layer is to reduce the spatial 
dimensions of the image through down sampling. This results 
in significant reduction in the number of trainable parameters. 
A representative value is chosen, for example, to represent four 
(2x2 grid) values, resulting in halving the image resolution. 
The pooling layers can be interspersed in a neural network for 
the required effect. The choice of value can be governed by 

selecting the maximum, average pooling or L2-norm from the 
selected subset (normally 2x2 block in the image), however, 
max pooling is generally the preferred approach.  

Combining and generalizing of the pooling functions is 
proposed in [27] but it slightly increased the computational 
complexity in training and required more model parameters.   

E. Batch Normalization Layer  

The training of a neural network model is slowed down, as 
the changes to layers’ inputs are effected by previous layer 
parameters changes [16]. Batch normalization proposed by [16] 
overcomes this by normalizing each training mini-batch. They 
also propose dispensing with the Dropout layer as batch 
normalization aids regularization. Their results show 
improvements for ImageNet classification performing better 
than a human.  

F. Dropout Layer  

Dropout [30] is added to help prevent overfitting by 
randomly setting some of the input units to 0 for each update 
during training. 

G. Dense Layers  

These are used at the end of a classification task to combine 
the results of the previous layers.  These are fully connected 
layers. 

IV. HYPER PARAMETERS 

CNN are complex networks and comprise of many hyper 
parameters. Hyper parameters are basically parameters about 
parameters, describing the model parameter values. The right 
choice of hyper parameters has a profound effect on the result 
of a network. 

It is generally considered difficult to design an optimum 
model on the first attempt and it needs some trial and 
experimentation to find optimum values. Hyper parameter 
optimization or tuning is a process applied to tune the model by 
tweaking the parameters for the best results. The model may be  



 

 

Fig. 3. System architecture. 

TABLE I.  SELECTED HYPER PARAMETERS AND THEIR VALUE RANGES 

 

Hyper parameter Value 

Optimizers SGD, RMSProp, Adam 

Activation  ReLU, LeakyReLU, PReLU 

Learning Rate 
0.00001, 0.0001, 0.001, 0.01, 

0.1 

Batch size 32, 64, 128, 256, 512 

DropOut 0.25, 0.5 

Regularization Batch Normalization, Dropout 

Pooling Max (2,2) 

Convolution Layers 6 

 

susceptible to degradation by small changes to its parameters. 
For example, removing one layer from the five convolutional 
layer model degraded the performance [4]. Thus a lot of mutual 
interdependencies might exist amongst the optimum hyper 
parameters.   

Grid search based methods worked well in earlier machine 
learning models with limited parameters. Grid based methods 
performed an exhaustive search over the entire parameter space 
without regard to the importance or effect of a single 
parameter. Nowadays it is generally agreed in the research 
community that the random search for optimum parameters 
provides better results compared to grid search. This could 
initially be in larger steps across the selected range of values 
and then in finer steps closer to values yielding improved 
results. A brief summary of the important hyper parameters is 
provided in the following sub-sections.  

A. Architecture-Type and number of hidden layers 

The layers between the input and output layers are termed as 

hidden layers (Fig 1b and 2). The number of hidden layers 

define the depth of the network.  The depth of the proposed 

layers has been consistently increasing and in general perform 

better than a shallow network. However alternate architectures 

with less depth have also been proposed [28]. 

   

B. Optimizers 

The selected optimizers for investigation are RMSProp, 

Stochastic Gradient Descent (SGD) and Adam. These work 

well with a batch size of 32 to 512 [29]. The authors [29] have 

studied using SGD with larger batch sizes for deep learning 

applications. An important and common parameter in all these 

optimizers is the learning rate. The value of the learning rate is 

between 0 and 1. Instead of a linear scale, it is appropriate to 

use a logarithmic scale. 

C. Activation Function 

The activation functions have been compared in [14] and 

ReLU provided the best results. More complex variants of 

ReLU have been proposed recently, that is, LeakyReLU [25] 

and PReLU [26]. The implementations are avaialble in Keras 

as “Advanced Activations”. For multi-class classification 

Softmax is used as the last layer. 

D. Dropout Regularization 

Training the model prepares it to perform well on the 

unseen data during testing [6]. However, a complex model can 

learn the training data perfectly but may not generalize and 

perform poorly on unseen examples, a phenomenon termed as 

overfitting. Regularization is used to avoid overfitting. One 

regularization technique is Dropout [15]. We use 0.25 Dropout 

layers to avoid overfitting. Data Augmentation is another 

possibility where existing data is augmented by generating 

new images from existing data, that is, an image generated by 

modifying an existing one through simple operations such as 

flip and rotation. 

E. Convolution Layer 

There are many parameters that can be changed. The 

important ones here are the number of kernels applied to each 

layer, the height and width of each convolutional kernel, zero 

padding and stride. Without zero padding the size of the 

convolved image will reduce. Stride means the amount of  



 
 

Fig. 4. Accuracy and Loss results with change of Optimizers. 

 

 
 

Fig. 6. Accuracy and Loss results with change of Batch Size. 

 

 

movement of the kernel after calculating one value. If it is 

more than one then again the convolved image will reduce in 

size. 

 

F. Dimensions of pooling matrices in Pooling Layers 

Generally a 2x2 size for the pooling is used that down 

samples the image into half. A larger pooling matrix size 

would increase the down sampling rate. 

G. Number of Epochs and batch size 

An epoch consists of one pass of data over the batches. In 

general a higher value for epoch will result in better results. 

During each epoch the data is processed in batches.  

 
 

Fig. 5. Accuracy and Loss results with change of Learning Rate. 

 

 
 

Fig. 7. Accuracy and Loss results with Change of Activation Units. 

 

V. SYSTEM MODEL 

Keras [30] was used with Tensorflow [31] (as a backend), 

a popular library for image classification. Keras is the perfect 

choice for investigating choice of hyper parameters as it 

allows for a quick change of parameters to observe the 

corresponding effect. The Amazon Web Services (AWS) 

p2.xlarge instance type having 61 GB RAM, 4 vCPUs and a 

single GPU was used to run the experiments.  

As explained above, although grid search could also have 

been used, we chose to do the manual hyper parameter tuning 

by changing one hyper parameter at a time and observing its 

effect. Due to the limited availability of computing resources, 

we kept the model as fixed (Fig 3) and investigated the effect 



of the change of the selected hyper parameters on the results. 

Only one parameter at a time was altered and used the others 

with the corresponding optimal values. This provides a fair 

comparison across the choices for a hyper parameter and 

provides insights into the effect each hyper parameter has on 

improving the model. 

An epoch size of 20 and Batch Normalization with 

Dropout were used. 

A. Image Datasets 

We use the most common benchmark dataset in machine 
learning classification problems, CIFAR-10 [4][26], which has 
60,000 images of size 32x32 pixels across 10 categories 
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship, 
truck). It is widely used for deep learning research on image 
processing. 

B. System Architecture 

The architecture of neural network is shown in Fig 3. It 
comprises of 6 convolutional layers, each followed by an 
Activation layer. We chose the architecture to be both simple 
and yet support the proposed hyper parameter tuning. 
Important parameters with the values to be investigated are 
listed in Table I. We use both Batch Normalization and 
Dropout for regularization [16]. In addition Max pooling was 
used. The model provides promising results and can be 
effectively used to see the outcome of hyper parameter 
changes. 

C. Selected Hyper Parameters 

The width and depth of the model was kept constant. Batch 

normalization and Dropout regularization was used to speed 

up the training process. The following hyper parameters for 

investigation based on their importance, were selected:  

 Optimizer (RMSprop, SGD, Adam) 

 Learning rate (0.00001, 0.0001, 0.001, 0.01, 0.1) 

 Number of epochs and batch size (batch 32, 64, 128, 

256, 512) 

 Activation (ReLU, LeakyReLU, PReLU)  

VI. RESULTS 

The model was executed for tuning each of the hyper 
parameters, as described in Section V (C). Continuing in the 
sequence listed, we explored and selected the best hyper 
parameter value and used it for subsequent explorations. For 
each selected parameter value we report the loss and accuracy 
for both training and test data. 

A. Optimizers 

The results are shown in Fig 4. The Learning rate as 0.001, 

batch size as 32, and ReLU were used. Adam and RMSProp 

gave better results compared to SGD for both accuracy and 

loss. 

B. Learning Rate 

The results for the effect of the learning rate are plotted in 

Fig 5 for the Adam optimizer and batch size of 32, which had 

better results overall compared to RMSProp (not shown). The 

best results for accuracy and loss were obtained for a learning 

rate of 0.001. The extreme values at 0.1 and 0.00001 gave 

poor performance. 

 

C. Number of Epochs & Batch Size 

The improvements of results with a higher epoch is 

understood, however, the effect of batch size has not been 

explored. We kept the number of fixed epochs as 20 but varied 

the batch size from 32 to 256. The results are shown in Fig 6. 

The performance at batch size of 32, 64 and 128 was similar. 

However, for size 32 we had a better loss performance. 

D. Activation Unit 

We compared ReLU with the newly added advanced 
activations Leaky ReLU (LeakyReLU), and Parametric ReLU 
(PReLU). The batch size was 32, and learning rate was 0.001. 
The results are shown in Fig 7. The performance of the ReLU 
and LeakyReLU is similar to PReLU having a relatively better 
performance both in terms of loss and accuracy.  

VII. CONCLUSION 

A lot of advancements have taken place in the application 

of cognitive image processing concepts as artificial neural 

networks making it a mainstream research area. The results of 

current state-of-the-art CNN have been very promising. The 

tuning of a model architecture is driven by intuition and 

experimentation resulting in the optimal values of the hyper 

parameters. We have investigated the effect of different model 

hyper parameters on the problem of image classification for a 

popular image dataset and have provided the effect on the 

results. The findings would be helpful for researchers in 

selecting an initial optimal set of hyper parameters that can 

quickly be tuned to yield better results. Advancements are 

expected in autonomic image classification with further 

understanding of biological visual cognition processes. 

Automatic image cognition will thus become more accurate, 

fast, encompassing semantic and contextual information, thus 

truly opening innovative areas for cognitive image processing. 
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