96 research outputs found

    Blind image quality evaluation using perception based features

    Get PDF
    This paper proposes a novel no-reference Perception-based Image Quality Evaluator (PIQUE) for real-world imagery. A majority of the existing methods for blind image quality assessment rely on opinion-based supervised learning for quality score prediction. Unlike these methods, we propose an opinion unaware methodology that attempts to quantify distortion without the need for any training data. Our method relies on extracting local features for predicting quality. Additionally, to mimic human behavior, we estimate quality only from perceptually significant spatial regions. Further, the choice of our features enables us to generate a fine-grained block level distortion map. Our algorithm is competitive with the state-of-the-art based on evaluation over several popular datasets including LIVE IQA, TID & CSIQ. Finally, our algorithm has low computational complexity despite working at the block-level

    An Universal Image Attractiveness Ranking Framework

    Full text link
    We propose a new framework to rank image attractiveness using a novel pairwise deep network trained with a large set of side-by-side multi-labeled image pairs from a web image index. The judges only provide relative ranking between two images without the need to directly assign an absolute score, or rate any predefined image attribute, thus making the rating more intuitive and accurate. We investigate a deep attractiveness rank net (DARN), a combination of deep convolutional neural network and rank net, to directly learn an attractiveness score mean and variance for each image and the underlying criteria the judges use to label each pair. The extension of this model (DARN-V2) is able to adapt to individual judge's personal preference. We also show the attractiveness of search results are significantly improved by using this attractiveness information in a real commercial search engine. We evaluate our model against other state-of-the-art models on our side-by-side web test data and another public aesthetic data set. With much less judgments (1M vs 50M), our model outperforms on side-by-side labeled data, and is comparable on data labeled by absolute score.Comment: Accepted by 2019 Winter Conference on Application of Computer Vision (WACV

    Blind Quality Assessment for Image Superresolution Using Deep Two-Stream Convolutional Networks

    Full text link
    Numerous image superresolution (SR) algorithms have been proposed for reconstructing high-resolution (HR) images from input images with lower spatial resolutions. However, effectively evaluating the perceptual quality of SR images remains a challenging research problem. In this paper, we propose a no-reference/blind deep neural network-based SR image quality assessor (DeepSRQ). To learn more discriminative feature representations of various distorted SR images, the proposed DeepSRQ is a two-stream convolutional network including two subcomponents for distorted structure and texture SR images. Different from traditional image distortions, the artifacts of SR images cause both image structure and texture quality degradation. Therefore, we choose the two-stream scheme that captures different properties of SR inputs instead of directly learning features from one image stream. Considering the human visual system (HVS) characteristics, the structure stream focuses on extracting features in structural degradations, while the texture stream focuses on the change in textural distributions. In addition, to augment the training data and ensure the category balance, we propose a stride-based adaptive cropping approach for further improvement. Experimental results on three publicly available SR image quality databases demonstrate the effectiveness and generalization ability of our proposed DeepSRQ method compared with state-of-the-art image quality assessment algorithms

    ICface: Interpretable and Controllable Face Reenactment Using GANs

    Get PDF
    This paper presents a generic face animator that is able to control the pose and expressions of a given face image. The animation is driven by human interpretable control signals consisting of head pose angles and the Action Unit (AU) values. The control information can be obtained from multiple sources including external driving videos and manual controls. Due to the interpretable nature of the driving signal, one can easily mix the information between multiple sources (e.g. pose from one image and expression from another) and apply selective post-production editing. The proposed face animator is implemented as a two-stage neural network model that is learned in a self-supervised manner using a large video collection. The proposed Interpretable and Controllable face reenactment network (ICface) is compared to the state-of-the-art neural network-based face animation techniques in multiple tasks. The results indicate that ICface produces better visual quality while being more versatile than most of the comparison methods. The introduced model could provide a lightweight and easy to use tool for a multitude of advanced image and video editing tasks.Comment: Accepted in WACV-202
    corecore