2,056 research outputs found

    Deep Learning Aided Data-Driven Fault Diagnosis of Rotatory Machine: A Comprehensive Review

    Get PDF
    This paper presents a comprehensive review of the developments made in rotating bearing fault diagnosis, a crucial component of a rotatory machine, during the past decade. A data-driven fault diagnosis framework consists of data acquisition, feature extraction/feature learning, and decision making based on shallow/deep learning algorithms. In this review paper, various signal processing techniques, classical machine learning approaches, and deep learning algorithms used for bearing fault diagnosis have been discussed. Moreover, highlights of the available public datasets that have been widely used in bearing fault diagnosis experiments, such as Case Western Reserve University (CWRU), Paderborn University Bearing, PRONOSTIA, and Intelligent Maintenance Systems (IMS), are discussed in this paper. A comparison of machine learning techniques, such as support vector machines, k-nearest neighbors, artificial neural networks, etc., deep learning algorithms such as a deep convolutional network (CNN), auto-encoder-based deep neural network (AE-DNN), deep belief network (DBN), deep recurrent neural network (RNN), and other deep learning methods that have been utilized for the diagnosis of rotary machines bearing fault, is presented

    Real Time Bearing Fault Diagnosis Based on Convolutional Neural Network and STM32 Microcontroller

    Full text link
    With the rapid development of big data and edge computing, many researchers focus on improving the accuracy of bearing fault classification using deep learning models, and implementing the deep learning classification model on limited resource platforms such as STM32. To this end, this paper realizes the identification of bearing fault vibration signal based on convolutional neural network, the fault identification accuracy of the optimised model can reach 98.9%. In addition, this paper successfully applies the convolutional neural network model to STM32H743VI microcontroller, the running time of each diagnosis is 19ms. Finally, a complete real-time communication framework between the host computer and the STM32 is designed, which can perfectly complete the data transmission through the serial port and display the diagnosis results on the TFT-LCD screen.Comment: 6 pages, 9 figure

    Fault Diagnosis of Rotating Machinery Bearings Based on Improved DCNN and WOA-DELM

    Get PDF
    A bearing is a critical component in the transmission of rotating machinery. However, due to prolonged exposure to heavy loads and high-speed environments, rolling bearings are highly susceptible to faults, Hence, it is crucial to enhance bearing fault diagnosis to ensure safe and reliable operation of rotating machinery. In order to achieve this, a rotating machinery fault diagnosis method based on a deep convolutional neural network (DCNN) and Whale Optimization Algorithm (WOA) optimized Deep Extreme Learning Machine (DELM) is proposed in this paper. DCNN is a combination of the Efficient Channel Attention Net (ECA-Net) and Bi-directional Long Short-Term Memory (BiLSTM). In this method, firstly, a DCNN classification network is constructed. The ECA-Net and BiLSTM are brought into the deep convolutional neural network to extract critical features. Next, the WOA is used to optimize the weight of the initial input layer of DELM to build the WOA-DELM classifier model. Finally, the features extracted by the Improved DCNN (IDCNN) are sent to the WOA-DELM model for bearing fault diagnosis. The diagnostic capability of the proposed IDCNN-WOA-DELM method was evaluated through multiple-condition fault diagnosis experiments using the CWRU-bearing dataset with various settings, and comparative tests against other methods were conducted as well. The results indicate that the proposed method demonstrates good diagnostic performance

    Fault Diagnosis of Transfer Learning Equipment Based on Cloud Edge Collaboration + Confrontation Network

    Get PDF
    With the continuous improvement of product quality, production efficiency, and complexity, higher requirements are put forward for the reliability and stability of equipment, and the difficulty of real-time diagnosis of faults and functional failures is also increasing. The traditional fault diagnosis methods based on signal processing and Convolutional neural network cannot meet the requirements of on-site online real-time fault diagnosis of equipment. One is that the vibration signals on the industrial site are superimposed on each other, nonlinear and unstable and traditional feature extraction methods take a long time, resulting in unstable extraction results. Second, massive data and fault diagnosis algorithms need rich computing and storage resources. The traditional Convolutional neural network method conflicts with the real-time response requirements of fault diagnosis. At the same time, different models of fault diagnosis models have poor generalization ability, and the diagnostic accuracy is not high or even impossible to diagnose. To solve the above problems, this paper proposes a fault diagnosis method based on industrial Internet platform, which is equipment cloud edge collaboration + adaptive countermeasure network Transfer learning. On the edge side, the vibration signals collected from key components of the model are processed using empirical mode decomposition (EEMD) to solve the problem of signal nonlinearity and stationarity. In the cloud, EEMD signals of different models are decomposed into source domain and target domain for confrontation training, which is used as the input of the improved domain adversarial network model DANN (Domain Adversarial Neural Networks), so as to improve the accuracy of fault diagnosis of different models by using cloud computing power and the improved adversarial network Transfer learning algorithm. Through the analysis of experimental data, this paper verifies that the model after the confrontation network Transfer learning is more accurate than the traditional fault diagnosis method. Through the coordination of computing resources and real-time requirements, real-time diagnosis of cloud side collaborative bearing fault is realized

    An intelligent bearing fault diagnosis method based on the AFEEMD and 1D CNNs

    Get PDF
    To process the non-stationary vibration signals and improve accuracy of bearing fault diagnosis, this paper presents a novel intelligent fault diagnosis method based on the adaptive fast ensemble empirical mode decomposition (AFEEMD) and one-dimensional convolutional neural networks (1D CNNs). First, the AFEEMD algorithm is utilized to decompose the raw signals into intrinsic mode functions (IMFs). Then, the time and frequency statistic features of the first several IMFs are analyzed to form feature vector, which are used as the input of 1D CNNs to identify the bearing fault. The performance of the proposed method is validated using the dataset from the Case Western Reserve University (CWRU). Compared with the traditional back propagation neural network (BPNN), the results show that the proposed AFEEMD-1D CNNs method not only can obtain higher accuracy and achieve more reliable performance, but also can improve the generalization performance. Due to the end-to-end feature learning capacity, it can be extended to other machinery for fault diagnosis
    • ā€¦
    corecore