9 research outputs found

    Exact Relation Between Continuous and Discrete Linear Canonical Transforms

    Get PDF
    Abstract—Linear canonical transforms (LCTs) are a family of integral transforms with wide application in optical, acoustical, electromagnetic, and other wave propagation problems. The Fourier and fractional Fourier transforms are special cases of LCTs. We present the exact relation between continuous and discrete LCTs (which generalizes the corresponding relation for Fourier transforms), and also express it in terms of a new definition of the discrete LCT (DLCT), which is independent of the sampling interval. This provides the foundation for approximately computing the samples of the LCT of a continuous signal with the DLCT. The DLCT in this letter is analogous to the DFT and approximates the continuous LCT in the same sense that the DFT approximates the continuous Fourier transform. We also define the bicanonical width product which is a generalization of the time-bandwidth product. Index Terms—Bicanonical width product, fractional Fourier transform, linear canonical series, linear canonical transform

    Image Watermarking in the Linear Canonical Transform Domain

    Get PDF
    The linear canonical transform, which can be looked at the generalization of the fractional Fourier transform and the Fourier transform, has received much interest and proved to be one of the most powerful tools in fractional signal processing community. A novel watermarking method associated with the linear canonical transform is proposed in this paper. Firstly, the watermark embedding and detecting techniques are proposed and discussed based on the discrete linear canonical transform. Then the Lena image has been used to test this watermarking technique. The simulation results demonstrate that the proposed schemes are robust to several signal processing methods, including addition of Gaussian noise and resizing. Furthermore, the sensitivity of the single and double parameters of the linear canonical transform is also discussed, and the results show that the watermark cannot be detected when the parameters of the linear canonical transform used in the detection are not all the same as the parameters used in the embedding progress

    The Generalization of the Poisson Sum Formula Associated with the Linear Canonical Transform

    Get PDF
    The generalization of the classical Poisson sum formula, by replacing the ordinary Fourier transform by the canonical transformation, has been derived in the linear canonical transform sense. Firstly, a new sum formula of Chirp-periodic property has been introduced, and then the relationship between this new sum and the original signal is derived. Secondly, the generalization of the classical Poisson sum formula to the linear canonical transform sense has been obtained

    The Generalization of the Poisson Sum Formula Associated with the Linear Canonical Transform

    Get PDF
    The generalization of the classical Poisson sum formula, by replacing the ordinary Fourier transform by the canonical transformation, has been derived in the linear canonical transform sense. Firstly, a new sum formula of Chirp-periodic property has been introduced, and then the relationship between this new sum and the original signal is derived. Secondly, the generalization of the classical Poisson sum formula to the linear canonical transform sense has been obtained

    Wigner-Ville Distribution Associated with the Linear Canonical Transform

    Get PDF
    The linear canonical transform is shown to be one of the most powerful tools for nonstationary signal processing. Based on the properties of the linear canonical transform and the classical Wigner-Ville transform, this paper investigates the Wigner-Ville distribution in the linear canonical transform domain. Firstly, unlike the classical Wigner-Ville transform, a new definition of Wigner-Ville distribution associated with the linear canonical transform is given. Then, the main properties of the newly defined Wigner-Ville transform are investigated in detail. Finally, the applications of the newly defined Wigner-Ville transform in the linear-frequency-modulated signal detection are proposed, and the simulation results are also given to verify the derived theory

    A New Class of Linear Canonical Wavelet Transform

    Get PDF
    We define a new class of linear canonical wavelet transform (LCWT) and study its properties like inner product relation, reconstruction formula and also characterize its range. We obtain Donoho-Stark’s uncertainty principle for the LCWT and give a lower bound for the measure of its essential support. We also give the Shapiro’s mean dispersion theorem for the proposed LCWT

    Appell Transformation and Canonical Transforms

    Get PDF
    The interpretation of the optical Appell transformation, as previously elaborated in relation to the free-space paraxial propagation under both a rectangular and a circular cylindrical symmetry, is reviewed. Then, the caloric Appell transformation, well known in the theory of heat equation, is shown to be amenable for a similar interpretation involving the Laplace transform rather than the Fourier transform, when dealing with the 1D heat equation. Accordingly, when considering the radial heat equation, suitably defined Hankel-type transforms come to be involved in the inherent Appell transformation. The analysis is aimed at outlining the link between the Appell transformation and the canonical transforms
    corecore