1,738 research outputs found

    Representation of maxitive measures: an overview

    Full text link
    Idempotent integration is an analogue of Lebesgue integration where σ\sigma-maxitive measures replace σ\sigma-additive measures. In addition to reviewing and unifying several Radon--Nikodym like theorems proven in the literature for the idempotent integral, we also prove new results of the same kind.Comment: 40 page

    The Expectation Monad in Quantum Foundations

    Get PDF
    The expectation monad is introduced abstractly via two composable adjunctions, but concretely captures measures. It turns out to sit in between known monads: on the one hand the distribution and ultrafilter monad, and on the other hand the continuation monad. This expectation monad is used in two probabilistic analogues of fundamental results of Manes and Gelfand for the ultrafilter monad: algebras of the expectation monad are convex compact Hausdorff spaces, and are dually equivalent to so-called Banach effect algebras. These structures capture states and effects in quantum foundations, and also the duality between them. Moreover, the approach leads to a new re-formulation of Gleason's theorem, expressing that effects on a Hilbert space are free effect modules on projections, obtained via tensoring with the unit interval.Comment: In Proceedings QPL 2011, arXiv:1210.029

    The core of bicapacities and bipolar games

    Get PDF
    Bicooperative games generalize classical cooperative games in the sense that a player is allowed to play in favor or against some aim, besides non participation. Bicapacities are monotonic bicooperative games, they are useful in decision making where underlying scales are of bipolar nature, i.e., they distinguish between good/satisfactory values and bad/unsatisfactory ones. We propose here a more general framework to represent such situations, called bipolar game. We study the problem of finding the core of such games, i.e., theset of additive dominating games.fuzzy measure, bicapacity, cooperative game, bipolar scale,core

    A Discrete Choquet Integral for Ordered Systems

    Get PDF
    A model for a Choquet integral for arbitrary finite set systems is presented. The model includes in particular the classical model on the system of all subsets of a finite set. The general model associates canonical non-negative and positively homogeneous superadditive functionals with generalized belief functions relative to an ordered system, which are then extended to arbitrary valuations on the set system. It is shown that the general Choquet integral can be computed by a simple Monge-type algorithm for so-called intersection systems, which include as a special case weakly union-closed families. Generalizing Lov\'asz' classical characterization, we give a characterization of the superadditivity of the Choquet integral relative to a capacity on a union-closed system in terms of an appropriate model of supermodularity of such capacities

    Resource theories of knowledge

    Full text link
    How far can we take the resource theoretic approach to explore physics? Resource theories like LOCC, reference frames and quantum thermodynamics have proven a powerful tool to study how agents who are subject to certain constraints can act on physical systems. This approach has advanced our understanding of fundamental physical principles, such as the second law of thermodynamics, and provided operational measures to quantify resources such as entanglement or information content. In this work, we significantly extend the approach and range of applicability of resource theories. Firstly we generalize the notion of resource theories to include any description or knowledge that agents may have of a physical state, beyond the density operator formalism. We show how to relate theories that differ in the language used to describe resources, like micro and macroscopic thermodynamics. Finally, we take a top-down approach to locality, in which a subsystem structure is derived from a global theory rather than assumed. The extended framework introduced here enables us to formalize new tasks in the language of resource theories, ranging from tomography, cryptography, thermodynamics and foundational questions, both within and beyond quantum theory.Comment: 28 pages featuring figures, examples, map and neatly boxed theorems, plus appendi

    Coexistence in interval effect algebras

    Full text link
    Motivated by the notion of coexistence of effect-valued observables, we give a characterization of coexistent subsets of interval effect algebras

    The core of games on distributive lattices : how to share benefits in a hierarchy

    Get PDF
    Finding a solution concept is one of the central problems in cooperative game theory, and the notion of core is the most popular solution concept since it is based on some rationality condition. In many real situations, not all possible coalitions can form, so that classical TU-games cannot be used. An interesting case is when possible coalitions are defined through a partial ordering of the players (or hierarchy). Then feasible coalitions correspond to teams of players, that is, one or several players with all their subordinates. In these situations, it is not obvious to define a suitable notion of core, reflecting the team structure, and previous attempts are not satisfactory in this respect. We propose a new notion of core, which imposes efficiency of the allocation at each level of the hierarchy, and answers the problem of sharing benefits in a hierarchy. We show that the core we defined has properties very close to the classical case, with respect to marginal vectors, the Weber set, and balancedness.Cooperative game, feasible coalition, core, hierarchy.
    • 

    corecore