7 research outputs found

    Multi-Criterion Dynamic Traffic Assignment Models and Algorithms for Road Pricing Applications with Heterogeneous Users

    Get PDF
    This study develops a simulation-based dynamic traffic assignment, or dynamic user equilibrium (DUE), model for dynamic road pricing applications. This proposed model is considered as the bi-criterion DUE (BDUE) model, because it explicitly considers heterogeneous users with different values of time (VOT) choose paths that minimize the two path attributes: travel time and out-of-pocket cost. This study assumed trip-makers would select their respective least generalized cost paths, the generalized cost being the sum of travel cost and travel time weighted by the trip-maker's VOT. The VOT is modeled as a continuous random variable distributed across all users in a network. The BDUE problem is formulated as an infinite dimensional variational inequality (VI), and solved by a column generation-based algorithmic framework which embeds (i) a parametric analysis (PAM) to obtain the VOT breakpoints which determine multiple user classes, and find the set of extreme non-dominated paths, (ii) a simulator to determine experienced travel times, and (iii) a multi-class path flow equilibrating scheme to update path assignments. The idea of finding and assigning heterogeneous trips to the set of extreme non-dominated paths is based on the assumption that in the disutility minimization path choice model with convex utility functions, all trips would choose only among the set of extreme non-dominated paths. Moreover, to circumvent the difficulty of storing the grand path set and assignment results for large-scale network applications, a vehicle-based implementation technique is proposed. This BDUE model is generalized to the multi-criterion DUE (MDUE) model, in which heterogeneous users with different VOT and values of reliability (VOR) make path choices so as to minimize their path travel cost, travel time, and travel time variability. Another important extension of the BDUE model is the multi-criterion simultaneous route and departure time user equilibrium (MSRDUE) model, which considers heterogeneous trip-makers with different VOT and values of schedule delay (VOSD) making simultaneous route and departure time choices so as to minimize their respective trip costs, defined as the sum of travel cost, travel time weighted by VOT, and schedule delay weighted by VOSD. The MSRDUE problem is also solved by the column generation-based algorithmic framework. The Sequential Parametric Analysis Method (SPAM) is developed to find the VOT and VOSD breakpoints that define multiple user classes, and determine the least trip cost alternative (a combination of departure time and path) for each user class

    Modeling Changes in the Composition of River Water with Discharged Wastewater: A Case Study in NW Russia

    No full text
    The technogenic impact of the development of the Lomonosov diamond deposit is associated with the discharge of quarry and drainage water into the river, which has a special conservation status. Earlier studies on the composition of bottom sediments showed that there are signs of increased accumulation of heavy metals and radionuclides at wastewater discharge sites. The purpose of this work was to predict changes in the composition of surface water and bottom sediment in the river during the further development of mining operations with brackish and salty water captured by drainage systems, the presence of which was established in the zone of their future influence. For this, a simulation of changes in the composition of the water in the river was carried out using the GEOCHEQ software package by minimizing the free energy of the system using a convex simplex algorithm. It was found that the maximum salinity of surface water can reach 1.51 g/L. In this case, the MPC of Cl−, Na+, SO42−, Mg2+, Sr, V, and U can be exceeded for fishery watercourses. The genetic basis of the accumulation of these components in solutions for mixing was considered. According to the calculations, when about 5000 m3/h of drainage water is discharge d into the river, the mass of precipitated chemical elements will be 56–191 t/h, including up to 2.1 t/h of iron; therefore, accumulation in the discharge zone must be controlled

    Modeling Changes in the Composition of River Water with Discharged Wastewater: A Case Study in NW Russia

    No full text
    The technogenic impact of the development of the Lomonosov diamond deposit is associated with the discharge of quarry and drainage water into the river, which has a special conservation status. Earlier studies on the composition of bottom sediments showed that there are signs of increased accumulation of heavy metals and radionuclides at wastewater discharge sites. The purpose of this work was to predict changes in the composition of surface water and bottom sediment in the river during the further development of mining operations with brackish and salty water captured by drainage systems, the presence of which was established in the zone of their future influence. For this, a simulation of changes in the composition of the water in the river was carried out using the GEOCHEQ software package by minimizing the free energy of the system using a convex simplex algorithm. It was found that the maximum salinity of surface water can reach 1.51 g/L. In this case, the MPC of Cl−, Na+, SO42−, Mg2+, Sr, V, and U can be exceeded for fishery watercourses. The genetic basis of the accumulation of these components in solutions for mixing was considered. According to the calculations, when about 5000 m3/h of drainage water is discharge d into the river, the mass of precipitated chemical elements will be 56–191 t/h, including up to 2.1 t/h of iron; therefore, accumulation in the discharge zone must be controlled

    The study of electric-energetic coupling in the short-shortest term operation planning using FPOCA

    No full text
    Este trabalho traz um estudo inicial do acoplamento elétrico-energético no planejamento da operação de curto-curtíssimo prazo utilizando Fluxo de Potência Ótimo em Corrente Alternada (FPOCA) com o objetivo de averiguar possíveis desvios entre o planejamento energético e o planejamento elétrico. É feita uma análise da influência dos aspectos elétricos do sistema de transmissão no planejamento energético de curto prazo utilizando-se um FPOCA, juntamente com a minimização do custo da geração e das perdas na transmissão. A minimização do custo da geração é feita através de uma otimização do sistema hidrotérmico utilizando-se um Programa de Otimização de Sistema Hidrotérmico (POSH) baseado em um algoritmo simplex convexo e na aplicação da teoria de fluxo em rede, enquanto que a minimização das perdas na transmissão é feita utilizando-se um FPOCA baseado no método Dual-Newton. Estas ferramentas permitem analisar a necessidade de ajustes para compatibilizar a otimização energética e a otimização elétrica de um sistema eletroenergético, e buscar um planejamento \"ótimo\" que atenda os planejamentos energético e elétrico. Dessa forma, a interface elétrico-energética se torna mais \"forte\", pois as metas de geração obtidas pelo planejamento de curto prazo que serão passadas para o planejamento de curtíssimo prazo, já incluem o efeito dos aspectos elétricos do sistema. Isto proporciona um controle dos desvios da trajetória \"ótima\" do sistema, o que contribui para melhorar a otimização global do planejamento da operação eletroenergética.This work brings a beginning study of the electric-energetic coupling in the short-shortest term operation planning using Optimal Power Flow in Alternate Current (OPFAC) aiming to inquire possible mismatches between the energetic planning and the eletric planning. It is made an analysis of the electrical aspects influence in the short term energetic planning using OPFAC together with the minimization of generation cost and the transmission losses. The generation cost minimization is made for the hidrothermal system optimization using a Hydrothermal System Optimization Program (POSH) based on a convex simplex algorithm and the application of the network flow theory, while the transmission losses minimization is made using an OPFAC based on the Dual-Newton method. These tools allow to analyze the necessity of adjustments to make compatible the energetic optimization and the electric optimization of the power system, and to search an \"optimal\" planning that attends both the energetic planning and electric planning. Like this, the electric-energetic interface becomes strongest, therefore the generation goals gotten by the short-term planning, that will be passed to the shortest-term planning, already includes the effect of the electric system aspects. These one provide the mismatches control in the optimal trajectory of the system and it contributes to improve the global optimization of power system operation planning. The analyzed system is the 440 kV Equivalent System of CESP (Energetic Company of São Paulo), with 53 bus, being 7 generation bus, 85 transmission lines and 48 transformers

    The study of electric-energetic coupling in the short-shortest term operation planning using FPOCA

    No full text
    Este trabalho traz um estudo inicial do acoplamento elétrico-energético no planejamento da operação de curto-curtíssimo prazo utilizando Fluxo de Potência Ótimo em Corrente Alternada (FPOCA) com o objetivo de averiguar possíveis desvios entre o planejamento energético e o planejamento elétrico. É feita uma análise da influência dos aspectos elétricos do sistema de transmissão no planejamento energético de curto prazo utilizando-se um FPOCA, juntamente com a minimização do custo da geração e das perdas na transmissão. A minimização do custo da geração é feita através de uma otimização do sistema hidrotérmico utilizando-se um Programa de Otimização de Sistema Hidrotérmico (POSH) baseado em um algoritmo simplex convexo e na aplicação da teoria de fluxo em rede, enquanto que a minimização das perdas na transmissão é feita utilizando-se um FPOCA baseado no método Dual-Newton. Estas ferramentas permitem analisar a necessidade de ajustes para compatibilizar a otimização energética e a otimização elétrica de um sistema eletroenergético, e buscar um planejamento \"ótimo\" que atenda os planejamentos energético e elétrico. Dessa forma, a interface elétrico-energética se torna mais \"forte\", pois as metas de geração obtidas pelo planejamento de curto prazo que serão passadas para o planejamento de curtíssimo prazo, já incluem o efeito dos aspectos elétricos do sistema. Isto proporciona um controle dos desvios da trajetória \"ótima\" do sistema, o que contribui para melhorar a otimização global do planejamento da operação eletroenergética.This work brings a beginning study of the electric-energetic coupling in the short-shortest term operation planning using Optimal Power Flow in Alternate Current (OPFAC) aiming to inquire possible mismatches between the energetic planning and the eletric planning. It is made an analysis of the electrical aspects influence in the short term energetic planning using OPFAC together with the minimization of generation cost and the transmission losses. The generation cost minimization is made for the hidrothermal system optimization using a Hydrothermal System Optimization Program (POSH) based on a convex simplex algorithm and the application of the network flow theory, while the transmission losses minimization is made using an OPFAC based on the Dual-Newton method. These tools allow to analyze the necessity of adjustments to make compatible the energetic optimization and the electric optimization of the power system, and to search an \"optimal\" planning that attends both the energetic planning and electric planning. Like this, the electric-energetic interface becomes strongest, therefore the generation goals gotten by the short-term planning, that will be passed to the shortest-term planning, already includes the effect of the electric system aspects. These one provide the mismatches control in the optimal trajectory of the system and it contributes to improve the global optimization of power system operation planning. The analyzed system is the 440 kV Equivalent System of CESP (Energetic Company of São Paulo), with 53 bus, being 7 generation bus, 85 transmission lines and 48 transformers
    corecore