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Abstract 

This Thesis is an investigation of a technique 

which can be used to solve geometric programming 

problems. Geometric programming is a method by which 

a certain class of nonlinear optimization problems nay 

be solved by solving an associated problem with a 

concave objective function and linear constraints. 

This convex progran is formed by a dual transformation 

of the original ( primal) pro bier.. 

Several techniques were investigated which could 

be used to solve linearly constrained convex programs. 

A method proposed by Zangwill (3) which uses a general- 

ized Simplex method, was concluded to be srell suitod to 

solving such problens. 

Several difficulties were encountered with using 

this Convex Simplex rr.ethod to directly solve geometric 

programs. An alogorithx which modified this method to 

deal specifically with these problems ^as found to 

have been proposed in a paper by Beck and £cker (/»). 

This algorithm v/as subsequently chosen as the -ajor 

area of concentration of this thesis. 

\  conputer program was written to solve geo-etric 

programing problems using this modified convex sirplex 
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method. Test problems were solved using this computer 

program and the CDC 6^00 computer at Lohigh, in order 

to examine the operation of this algorithm. Several 

conclusions wore drawn as to how the algorithm could bo 

expected to perform on various classes of problems. 

In general, the modified convex simplex method 

was found to be quite useful for solving high degreo 

of difficulty geometric programs, further study could 

lead to generalization of this algorithm to ullow 

solution of an even broader range of problcs, specific 

ally signorial problems. Finally, a comparative study 

of this and other algorithms //as proposed to provide 

a standardized solution technique for all geometric 

programming proble-'S. 

— c — 



1 : Introduction- 

1.1: Background- 

^oo-etric   progrnn-ir.g  is a   techniiue  developed  by 

-uffin,   Peterson,   rind  Zoner   '1)   to  solve  a  particular 

class of  nonlinear mathematical  opti-ization   problems. 

These  proble-s are  characterized  by  posyno  ial   (positive 

polyno-ial)  objective   functions  and constraints.   A 

posyno*"ial  is any  polynomial   function which has only 

positive coefficients,   ^hey   found   that   'any   proble-s 

of  this   for'   arise   naturally  in  such   fields  as  economics 

and engineering design.  The  basic   for"! of  these  proble-s 

is  as   follows: 

To 
Minimize y Jx) • V c.Pf(x) 0 ~   t»l ot l " 

subject to 
Tl 

where 

Mx) " I   cU
Qt(x) - } 

x > 0 

Pt(x) • IT  xn
otn;     t - 1. 2 T 1 ~   n»l n ° 

Q,(x) • TT xn
Itn;     t - 1, 2 T. 1 '   n-1 n ' 

(?) 

where:  c   .   is  the coefficient of the  i       ter-  in 
ra t 

the H      constraint   ^ust  be  positive). 
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th 

x    is the n  nrinal variable 
n th 

a .  is the exponent of the n  variable. 
n  th        th 

t   tern, m  constraint. (m=-0 io 

the objective   function) 

T    is  the  number of  ter-^s  in  the n 
PI 

constraint, 

V  is the number of variables. 

M i6 the number of constraints. 

This program is refered to as the primal, "ho 

nothod relies on solving the associated dual problem 

of  the   form: 

M    Tm 
Maximize   d(w)   ■   TT  TT 

n«0 t»l 

<o 
cmtumo 

w. mt 

'mt 

subject to 

I  "of    -    1 
t-1 "Ot 

M    Tm 
I.    L *******   '  C; n - 1. 2 H 

m»l  t»1 mtn mt 

•v. ■ J, "«t •• ■ • It 2,  ..., M 

(2) 

where:OJ .   is  the  dual  variable  associated with 
m      th th 

the t  ter.T in the m  constraint. 

The dual variables represent the proportion of the 
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aosociated priral ter- to the value of the oquatlon which 

it is in, either objective function or constraint. 

].?:   Theory 3ehind the Tochnique- 

The relationship between the objective function 

of the primal program and the dual objective is entirely 

analogous to the relationship between the arithnetic and 

geometric neans.(l) It is this relationship which is 

the basis for ~uch of the theory of geometric programing 

and which led to the name of the technique. This relation- 

ship assures that if a r^axi^u- value can be found for 

the dual program, it ->ust also bo a nini-iu-' for the 

primal. In fact, the tost of opti-iality of the dual 

progru- is convergence of the dual objective function 

with the pri-al. (A T.ore detailed discussion of this 

topic is included in appendix A) 

Each variable in the dual formulation corresponds 

directly to a tern in the priral program, the values of 

these ter-'.s being the proportions -entioned earlier. 

These proportions are independent of the coefficients 

of each term. This "eans that no matter what coefficients 

are used, the dual variables will give the opti-al 

solution. This can be especially useful if each ter- 

has so-e physical significance and there is so»-o 
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uncertainty in the coefficients. The geometric progra-n- 

ing solution will give useful results which will lead 

to optinality no matter nhat uncertainty exists. 

1.3: Problem Solving •racticalitios- 

ihe nethod of solving for these dual variables, in 

many cases, requires rorely solving a set of sirultan- 

eous linear equations. A look at the dual constraints 

reveals thst they form a set of ;.'•♦ 1 equations with T 

unknowns (T is the total number of pri-al ter-s in the 

problem). If N*l equals T a unique solution exists ahich 

can be solved for explicitly, as long as the oquations 

are nonsingular. If the nunber of teris in the primal 

progra- is greater than one plus the)nunber of variables, 

there are an infinite number of solutions to these 

equations. 

Because the difficulty in solving these problems 

increases as T-(N*1) increases, this value is called 

the degree of difficulty of a problen. It represents 

the number of dual variables which cannot be explicitly 

determined from the dual constraints. uany techniques 

have been proposed to try to solve the problem of high 

degree of difficulty. However, even with high degrees 

of difficulty, geometric program-ing is valuable in 

that it allows the solution of a highly nonlinear 
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proble-i by solving a problc-i with a concave objective 

function and linear constraints.(?) 

The constraints of the dual formulation are obvious- 

ly linear, and the objective function is easily shown to 

be concave. Using the logarithmic form, the objective 

function beco~.es the sun of the fallowing ter-s, 

^t^^t^no^-V f0r t=1»"-»Tn ? r=0,...,v. As 

long as the dual variables are positive (which is a 

requirement of the method) each of these torrr.s is 

positive and therefore the su- of these terns will be 

a concave function.(3) 

1.J+: Generalized Geometric "rograrving- 

•'11 of the above discussion deals with posyno ial 

problems only, "n practice problems ray co-e up which 

can only be described using signo-ial (signed polynomial) 

functions. A signo-ial is any polynomial, which may 

have either positive or negative coefficients. There are 

considerations unique to signomial problems vhich need 

not bo addressed when dealing with posynomials. -or 

exanple, because the objective function of the dual 

problem is no longer concave, the solution of a signon- 

ial problem will not necessarily yield a global optimum.(«>) 

Posynor.ial problems occur often enough in practice 

for a method which selves posynomial problems only to 
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be valuable, "ethods hav$ also been proposod which would 

transfon signonial problems into posynorriala for 

solution, thereby eliminating the need for a special 

algorithm to solve signoninls in nany cases (7). 

For these reasons this thesis will be confined to the 

discussion of posynomial programs. 
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2: Algorilhrs to deal with degrees of difficulty- 

2.1: Low Degrees of Difficulty- 

Thc first step to take when confronted with degroes 

of difficulty would be to examine how the problem was 

formulated. It may be possible to eliminate certain 

terns from the problen thereby reducing the degree of 

difficulty(P). ^f course, for -'any proble-s it isn't 

possible to eliminate degrees of difficulty. ror this 

reason there must be some method of dealing with dogreos 

of difficulty. 

One way to solve this type problen is to solve the 

dual constraints in tor^s of the variables reprosentod 

by the degrees of difficulty. This solution is then 

substituted into the dual objective function, "inally, 

this function is optimized either by differentiation 

or by searching over the range of the unknown variables 

?,?  Higher Degrees of ~>ifficulty- 

The technique just described will obviously beco-e 

unwieldy very rapidly for more than two or three degrees 

of difficulty. Therefore, some other technique must be 

used, ^ne way to approach this proble-i is to take 

advantage of the fact that the dual program is actually 

a convex programming problen {concave objectivo function 
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and linear constraints). Zangwill proposed a nethod to 

solve such problems which is based on the Simplex nethod. 

The details of this method can be seen in the reference 

(3). 

Beck and Ecker further modified this Convex Simplex 

method to allow its uge for solving geometric programm- 

ing problems (4). This technique appears promising for 

solving high degree of difficulty problems and will 

be the primary topic of the rest of this thesis. 

2.3: The Modified Convex Simplex Method- 

Two major modifications were needed to make the 

Convex Simplex method applicable to geometric programm- 

ing. The first was to handle problems with inactive 

primal constraints. If an inactive primal constraint 

exists, all dual variables associated with that constr- 

aint will be zro at optimality. If the variables 

associated with this constraint are allowed to vary 

individually the technique could cycle infinitely between 

changes in these variables, causing non-convergence of 

the method (2). 

In the original method only one variable was allowed 

to change at a time. Beck and Ecker modified the algorithm- 

to allow blocks of variables corresponding to inactive 

primal constraints to change at once (4). This change 
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eliminates the possibility of cycling, thereby insuring 

convergence. 

Also, at each iteration a gradient vector composed 

of the partial derivatives of the dual objective function 

with respect to each dual variable ->ust be computed. (The 

equations used to calculate this gradient are given in 

step 1c of the algorithm) If any dual variables are 

allowed to become zero, the components of this gradient 

become difficult to evaluate due to a zero term in the 

denominator of the gradient equations. The block docreaso 

provides that the gradient components within the block 

remain constant as the variables approach zero, so 

that the gradient is well defined ever with inactive 

primal constraints (/*). 

The second change had to do with the initial basic 

feasible dual solution, "angwill required that all 

nonbasic variables be zero initially (3)« Beck and Ecker (ff) 

changed this requirement so that all dual variables oust 

be positive (non-zero and non-negative) initially. This 

requirement insures that if an initial vector conform- 

ing to these conditions can be found, the problem is 

canonical and a solution exists. It also provides for 

a gradient vector which is well defined Initially, so 

that no approximations need be made. Now a more detailed 
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description of this alorithm will be given. ((,) 

Step 0: Initialization- 

Set up the initial tableau using the exponent natrix 

of the priral program. This tableau can be represented 

by the natrix equation Ty = b ; where y is the vector 

of dual variables, b is the right hand side of the dual 

constraints, and T is the body of the tableau. The comp- 

onents of T are represented by t.. where j is the row 

*and i is the column with each row corresponding to a 

basic variable and each column with a dual variable. 

These components initially have the values a .  from men 

the earlier notation with each row containing the 'a' 

exponents associated with a given primal variable. One 

more row is then added which has ones in the columns 

corresponding to the dual variables associated with the 

primal objective function, and zeros elsewhere. The 

initial right hand side has a one is this last row 

and zeros elsewhere. 

The phase I Simplex is then used to pivot in an 

initial basis. In the phase I Simplex a linear program 

is solved using the given constraints and an objective 

function of the sum of the artificial variables. From 

the solution of this problem a positive initial dual 

feasible vector can be calculated. If such a vector 
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can't, be found the problem is not canonical and the 

algorithm is terminated. .Otherwise, proceed to step 1. 

Step 1: 

Step one is performed in five stages which result in 

the values which are needed to determine the nonbasic 

variable to change. 

a) The first stage is to calculate the sum of the 

dual variables associated with each primal constraint,/\ . 

\ =)-.*< I k=l,?,...,M 
k  (k) i 

A a ,.0 o 

(k) represents the dual variables associated with the 

k  primal constraint, k=0 represents the objective 

function. 

b) Next the components of the objective function 

associated v/ith each dual variable are calculated as 

well as the total value of the dual objective function. 

These will be used to determine the gradient vector 

components and are calculated as follows: 

Vi =  yiln(cmt  m/yi>  ' yi  ° 

T x 

for i=l,...,T 

i=1 x 

This equation actually describes the natural log of 

the dual objective function, so for comparison with 
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the primal the value exp(V) must be used. 

c) Using the objective function components calc- 

ulated above, the gradient vector components are now 

computed. This vector consists of the partial derivatives 

of the objective function with respect to the curront 

dual variables, and is used to describe tho contribution 

of each dual variable to the objective function, it 

is calculated as follows: 

v./y. - V  , for i within the objective 
«  _/ function 
i  i v./y.      , elsewhere 

for i = 1 ,...,T 

d) Now the relative cost vector is computed. This 

vector will be used to determine the nonbasic variable 

to change. It represents the change in the objective 

function for each unit change in the dual variables, 

and is calculated as follows: 

c; = G< -r t„GK    , i=i,...,T -i-i^V^ 

where G.  is the gradient component of the J 
J 

basic variable, and t.. is as defined earlier. 

e) Finally, the optimal  changes in the nonbasic 

variables can be calculated. These values will be used 

in a later step to determine which nonbasic variable 

is to change if a block decrease isn't indicated. 



.They are: 

: . =  nax  .(C.) 
8'  1=1,...T X 

c 8? .  .in  (C^j 
1» ',«.., 1 

If C . = C - s 0, the current dual vector is opti-ial and 

proceed to step 7 to calculate the optimal primal var- 

iables. Otherwise, continue to step P. 

Step ?: Check for possible block decreases- 

If there exists a block of variables corresponding to 

a primal constraint for which all C. are less than zero, 

then that block is a candidate for a possible decrease. 

If it is feasible to set all dual variables in the block 

to zero, a block decrease is indicated and proceed to 

step 5e to determine the direction vector. Otherwise, 

continue to step 3» 

Step 3: 

The relative cost vector components represent the Increase 

in the dual objective function for each unit increase in 

the corresponding dual variable. If one of these costs 

is negative and the dual variable is positive, that 

variable can be decreased to bring about an increase 

in the objective function. The greatest increase in the 

objective function will result from either an increase 

in the dual variable with maximum positive relative 
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cost or a decrease in the variable vith the nininun 

product of relative cost and dual variable. Therefore, 

the variable to change is detemined using C . and C - 

as follows: 

if C . — IC -  , select v = y . to increase. 

if C ."= 'Cs?' » select y8 = yap 
t0 decrease. 

Where: y , is the dual variable associated with 

C ., y . is the variable associated with C -» and yB 

is the variable to change. 

Now proceed  to  step /+• 

Step l*: 

If y    is greater than zero go  to step 5a, otherwise y =0 
8 8 

and the variable to be increased is in a block which 

has been set to zero by a previous block decrease. In 

this case either a block increase is indicated, or 

the ratios of the dual variables to A_ can be adjusted 

so that a strict increase in the dual objective function 

is guaranteed. 

These ratios were calculated when the block was 

last decreased to zero using the equation: 

r*  = y4/Ai       where  (1) is the block affected i  *i' "1 and i£ (1). 

The amount by which the ratios associated with 

negative relative costs can be decreased and those 
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associated with positive relative costs increased, A" 

and ^ respectively, are calculated as follows: 

A+  = ^^d-expCC*)) , where £* =[i£(l)| c[~ c] 

5+ 

A"  = £ ^(expCc'j-l) , where 5" = [ 1 £ (1)| C*«* o] 

If A* is less than or equal to A"t the relative 

costs can be r.ade all non-positive by increases in r. 

for i£<5 and decreases in r. for i£0~. These 

increases are the components of A an<* are offset 

by decreases in r. for A~» Then proceed to step id. 

If A i6 greater than A" the increases in the 

ratios for A cannot be offset by decreases in the 

ratios for A"- In this case the relative costs in 

the bloc!', can all be made non-negative by appropriate 

decreases in r. for A" and the direction vector for 

the block increase is calculated in step 5d. 

Step 5: 

Step 5 involves calculating the direction vector for 

an iteration which describes the •naximun feasible 

change in the dual variables..This step is divided into 

five parts to deal with all possible cases. 

a) ye i
8 to be increased and at least one component 

of the tableau is column s is positive. In this case 

the increase in y_ could drive sone basic variable. s 
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to zero. The direction vector, d, is determined as 

follows: 

J 

d.  = 0 , elsewhere, 

d.  is the direction vector component for the j 
i 

basic dual variable and d is the component for the s 

variable to be increased. Since the move along the 

direction vector is accomplished by adding some fraction 

of each direction vector component to the corresponding 

dual variable, this choice for d„ insures that all dual ' s 

variables will remain non-negative. 

The direction vector components for the basic vari- 

ables come from the fact that the sum of the dual varia- 

bles times each term in the row must equal the same 

value after the move. This is because each row is a 

constraint which must be satisfied both before and after 

the move. Therefore, if yo is increased by d . the comp- s s 

onent of the row product due to y is increased by s 

t. d_ for each row, and the basic variable in each row 
J8 S 

must be reduced by an equal amount to keep each con- 

straint satisfied. 

Set Q=\  and go to step 6. Q  represents the 
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maximum feasible move along the direction vector. 

b) y is to be increased and-all components of 
8 

the tableau in column s are less than or equal to zero. 

In this case no matter how much y„ is incroased, no 

basic variables will be driven to zero. Since the basic 

variables are not a concern, d could take on any real 

positive value. For reasons of practicality d_ is set s 

to 1 and 6= 100. The objective function may actually 

be maximized for a move of greater than 100 times the 

direction vector, but this will be taken into account by 

future iterations. The rest of the direction vector is 

determined in the same manner as for 5»» then go to 

step 6' 

c) ye i
fi to De decreased. The direction vector is s 

determined similarly to stop 5at   e-.cept: 

d8 = ™x(-y 
J ...rv/V"1'"-3" 

In this case the concern is not only that basic 

variables are not driven negative, but y must also be 

kept positive. The second maximization above insures that 

the basic variables are never driven negative. If t. is 
J8 

negative for a basic variable, that variable will be 

decreased by t. d_, therefore for any variable the 

maximum value that d_ can have is yVt,  for that 
s j  j8 
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basic variable to remain non-negative. By taking the 

maximization of these negative values this limitation 

is at least net for all basic variables. 

Then this value is limited by the fact that the 

variable being decreased must also reamin non-negative. 

This leads to the form of the equation above which 

insures that d isn't larger than the magnitude of 

this variable. 

Now 6 is set to 1 and proceed to step 6. 

d) An entire block, previously decreased to zero, 

is being increased away from zero. The ratios correspond- 

ing to the dual variables in the block have been adjust- 

ed in step four so that all relative costs are positive 

within the block. The decrease in each basic variable 

per unit increase in the block, f.   , is calculated 
J 

as follows: 

J     i 

for i within the block affected. 

This equation is obvious when you realize that r 

represents the proportion of the i  variable to the 

i 

total contribution of the block to the right hand side. 

Since each row in the tableau represents an equality 

which must be satisfied, and the components of the rows 
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don't change as the variables are adjusted, any changes 

in the variables -nust take place so that the right hand 

side equals the tableau tines these variables. Therefore, 

the amount that the right hand side will be increased 

due to a unit increase in the block is given by the 

negative of the equation above, and the basic variables 

corresponding to each row nust decrease by an equal 

amount to maintain feasibility. 

The number of unit increases,tA  t which can be 

made in the block before driving a basic variable to 

zero must now be determined as: 

A =    min    (y  /J    \7   ^0) 

The ratio being minimized can easily be seen to 

equal the number of unit increases which can be made 

in the block before driving each basic variable to 

zero. The arount that any basic variable can decrease 

can only be as large as the value of the variable 

itself. By dividing each variable by the decrease in 

that variable for each unit increase in the block, the 

result is the number of unit increases which can be 

made before the variable is reduced by itself, ''ininiz- 

ing this value assures that feasibility will hold for 

all basic variables. 



This need only be done if f.     i8 negative, because 

if it is positive the bas.ic variable will increase with 

increases in tho block. If this is the case those varia- 

bles don't constrain the increase of the block. If 

none of these values are negative, Z\ i8 set to 1 

and 9=100. Otherwise, set 9-1. Then dcter-iine tho direc- 

tion vector as follows: 

d. = r. L\    ,  for i within tho block being 
increased 

<*b = TbA»  for J=1, —,N+1 
J    J 

d.  = 0   ,  elsewhere. 

then proceed to step 6. 

e) A block of variables is being decreased 

towards zero. The ratios rj=yj/Ak* for a^1 * witn*n 

the block where k represents the block being decreased, 

are calculated for use in case the block must be increas- 

ed in a future iteration. In this case the naxinun 

feasible decrease in each variable in the block is 

merely the current value of each variable. Then each 

basic variable must increase by the sun of the correspond* 

ing row components tiaes the variable values within 

the block. These values have already been checked in 

step three to insure that no basic variables are driven 
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negative. The direction vector is therefore calculated 

as follows: 

d.  = 2_^tiAy, » J*1f.fH+l 
J   i  J 

d.  = -yi , i within the block 

d.  = 0 , elsewhere. 

set 6a 1 and go to step 6. 

Step 6: 

This step is used to find the optimal move along the 

direction vector. The direction vector defines the 

maximum possible feasible changes in the dual variables. 

However, a move of the maximum feasible amount isn't 

necessarily optimal. This is because the derivative 

of the objective function with respect to the direction 

vector changes as the dual variables change. In the 

regular Simplex this derivative reduces to the reduced 

costs which are constants over the move. Therefore, the 

maximum feasible move will also be optimal and all 

moves will be along an edge of the feasible region. 

For the Convex Simplex this is not the case and it is 

necessary to find the optimal move which may be 

wJLthin the region. 

The location along the direction vector at any 
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point in the maximization is given by: 

In order to maximize the objective funtion, the 

point where the derivative with respect to T  approaches 

zero must be found. This derivative for any valuo of 

is approximated by: 

? Gi(zi)-di 
where G.(z.) is the gradient vector component given 

z,. Since this is a continuous function in 7", a soarch 

along the range of T can be used for this optimization. 

Once the optimal value of 7" has been determined, 

the new values of the dual variables are given by z.• 

Sort this new dual vector in descending order and pivot 

the N+l largest variables into the basis. If the value 

of T is less than some preselected tolerance, proceed 

to step 7 to deter-ine if the solution is consistant 

for the primal problem, otherwise return to step 1. 

Step 7: 

In this step the primal variables are estimated from 

the dual solution. This means solving the following set 

of linear equations: 

5 a..Z. = -G.    , for all i with y^O 



( 

.where a., is the exponent of the J  variable in 

the i primal tern,, 

and Z. = ln(x.)  , x. i8 the J  primal variable. 

These equations can be seen to be the same as those 

used to calculate the primal variables using the regular 

geometric programming algorithm. In tho regular GP 

the terms in the objective function are equated to the 

corresponding dual variables multiplied by the dual 

objective function value. The other terns are equated 

to the associated dual variables divided by tho sum 

of the dual variables corresponding to the constraint 

which the term is in. The equations given for the Convex 

Simplex are the sane as taking the natural logarithms 

of both sides of tho equations just described. The left 

hand side of these equations are obviously equal, and 

a look at the equations used to describe G. will easily 

show these to be equal to the negative of the log of 

the right hand side. 

Now that these relationships have been established, 

all that is necessary to obtain the primal variables is 

to solve this system of linear equations and calculate 

x, by taking the exponent of Z,. Usually this system has 

more equations than unknowns, so either a least squares 

solution could be used, or equations could be eliminated 
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until a full rank set of equations is left. However, 

it's possible that a system of less than full rank may 

exist. In this case it is possible to increase the rank 

of the syste- by solving a subsidiary maximum problem. 

"A subsidiary maxirurr problem has essentially the sa-ie 

structure as the dual program, except that its objective 

function is modified by replacing the nonlinear terss 

corresponding to the positive components in the optimal 

vector by linear terms." (/») Problems which require 

subsidiary maximum solutions have been observed to 

be very rare (l+)  and will therefore not be treated in 

this thesis, ^or further details on this technique refer 

to the reference (1). 

Now the values of x. which have been calculated 

can be used to determine if the problem is optimal 

and feasible. These values are substituted into the 

primal objective function and constraints for this 

purpose. If the constraints are close enough to being 

feasible (less than one plus some tolerance) and the 

primal objective function value differs from the dual 

by less than sore tolerance, the problem is solved. 

Otherwise, proceed to step 1. 

This completes the algorithm. 
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3: An Example- Using the Modified Convex Simplex Method 

The following problem, taken frow Beightler and 

Phillips (2), will be solved in order to illustrate the 

use of this algorithm. 

Minimize x;Vx;' 

subject to 

?xy ♦ x? + 3X^S1 

x. + x- ♦ xx —1 

x.   + 3x?  ♦ 2x,s1 

Step 0: Initialization- 

Initial Tableau 

Basiq 
Var ul U2 u? \ u? 

U6 U7 U8 u? 
U10 R1 *2 R? h b 

R1 -1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

*2 
-1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 

*3 -1 0 1 0 0 1 0 0 1 0 0 0 1  0 0 

-1 0 0 1 0 0 1 0 0 1 0 0 0  1 0 

The phase I Simplex is solved by using the above 

tableau to solve a problem with the following objective 

function: 

Minimize R] ♦ R? ♦ R, ♦ R. 

The final tableau after all artificial variables 

have been eliminated is: 
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Basic 
Var u1 U2 u? \ u? u6 u7 u8 u? U10 

b 

ul 1 0 0 0 6 0 0 0 0 0 1 

u2 0 1 0 0 1 0 0 1 0 0 1 

u3 
0 0 1 0 0 1 0 0 1 0 1 

"4 
0 0 0 1 0 0 1 0 0 1 1 

The initial dual vector is therefore, (1,1,1,1, 

0,0,0,0,0,0). A positive vector is computed by setting 

all nonbasic variables equal to one half of the minimum 

of the right hand side divided by the sum of the nonbasic 

columns for each row, which equals £•• The basic variables 

are calculated by subtracting the sun of the nonbasic 

variables tines the nonbasic colur.ns from the right 

hand side for each row. The resulting initial positive 

dual feasible vector is (1,.5,.5,.5,.?5,.25,.25,.25,.25, 

.25). 

First Iteration- 

First the nonbasic variable(s) to change must be deter- 

mined. The initial objective function value is 103.5133 

with an initial gradient of (-^.6397,1.7918,1.0986, 

2.1972,1.0986,1.0986,1.0986,1.0986,2.^972,l.7918). The 

relative cost components are computed as follows: 

cj = -**.6397 - ((-*♦.6397)0) ♦ O.79l8)(0) «• 0 ♦ 0) 
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C5 = .1.0986 - ((-/♦.6397X0) ♦ (1.7918X1) ♦ O.0986X0) 
*(2.1972)(0)) 

C*0= 1.7918 -(0*0*0* (2.1972X1)) 

giving the following vector (6,0,0,0,-0.693'5,0,-1.0986, 

-0.69315,1.0986,-0.^7). 

The maximum relative cost is 1.0986 for u_ and 

the minimum of the product of relative cost and dual 

variable is -O.T747 for u„. Since 1.0986 is greater 

than 0.2747, variable uq is chosen for increase. 

Now the direction vector is calculated. 

d9 = min ( - , - , 0.5 , -) = 0.5 

The - indicates that t. =0 for that basic variable. 

Because u, is the only basic variable with a nonzero 

element in the ninth column, d,=-0.5 and all other basic 

elements in the direction vector equal zero. This gives 

a direction vector of (0,0,-0.5,0,0,0,0,0,0.5,0). 

A search reveals that the optimal move along this 

direction vector is at 0.5811. The new dual vector is 

therefore; (1,0.5,0.20943,0.5,0.25,0.25,0.25,0.25,0.51*057, 

0.25), giving an objective function value of 122.069. 

Since the new value of uq is greater than u,, uq is 

pivoted into the basis in the third row. This will not 

change the tableau given at the end of step 0 because 
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the ninth colu-rn is already in the proper for*-, but 

this will not be the case for many problems. 

Second Iteration: 
Q 

The new relative cost vector is (0,0,0.40746 X 10" , 

0,-0.47783,-0.6549,-0.8835,-0.'5038,0,0.1373). The 
• •  •  • 

C, associated with the second constraint; C,-» C,, C„, 

are seen to all be negative, therefore it is possible 

that the corresponding constraint is inactive and a 

block decrease is indicated. 

The feasibility of the block decrease is determined 

by calculating the direction vector components for the 

basic variables and determining if any of these basic 

variables could be driven negative. These basic compon- 

ents all turn out to be positive so that the block 

decrease is feasible with a direction vector of 

(0,.25,0, .25,-.25,-.25,-.25,0,.25,0). The -raxi-num 

objective function is found with the block set all the 

way to zero with a value of 194.268. 

Primal Variable Estimation: 

After 41 iterations the following dual vector is found, 

(1.0,0.70235,0.28^38,0.63902,0,0,0,0.29765,0.7'76?, 

0.36098). Vhich gives a gradient of S5.3121,i.53', 

1.75,2.03',1.0986,l.0986,i.0986,1.531,'.75,2.031), 

and an objective function equal to 202.777. 
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Using Gp, G,, and G,, the following three indepen- 

dent equations result: 

In x, * -1.53096 

In x2 = -1.75 

giving: 

In x, = -2.051' 

x1 = 0.21633 

x? = 0.17377 

x, = 0.13119 

The primal objective  function is £02.777 which agrees 

with  the  dual  and  the constraints have  the  following 

values  respectively,   1.0,  0.52129,   '•000026,   therefore 

the  problem is solved. 
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k:   Programming the »'odified Convex Simplex "ethod- 

The next step in the. analysis is to write a 

computer program to solve geometric pro gran-a using the 

modified convex simplex (*♦). (The use of this program 

is detailed in appendix B) ''ost of this process 

involves translating the steps in the reforence (*+) 

into computer code. All that need be addressed when 

doing this is some bookeeping which need not be discuss- 

ed here. However, certain steps in the program require 

further explanation. 

J».1: The I-SL (5) Library- 

Two subroutines from the I"SL library (5) are used 

to help with some repetitive steps. .Vhenever matrix 

multiplication is required, the subroutine V'ULFF is used. 

This subroutine multiplies two matrices in full storage 

mode giving a third full storage matrix as the result. 

The subroutine LE"}T2F is used whenever it is necessary 

to solve systems of linear equations. This is needed 

when solving zero degree of difficulty problems, and 

for calculating the primal variables from the dual. 

km?:  Objective Function Optimization- 

At each iteration it is necessary to determine the 

optimal proportion of the direction vector for the move. 

This is done by finding the point where the derivative 
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of the objective function with respect to the direction 

vector approaches zero. The function FMIN from Forsythe, 

"alcolm, and Moler (6) is used to find this point. This 

function finds the minimum of a unirodal function 

between two points. In order to do this a function must 

be defined describing the derivative at any given point 

along the direction vector. This is done in function ? 

in the program. This merely defines the derivative 

using the equations described in the given description 

of the algorithm. 

4.3: Initialization- 

A mojor modification of the convex simplex nethod 

involves the initial basic dual feasible solution as 

described earlier. A routine must be provided in this 

progran to determine an initial solution which has the 

required properties. This is done by first using phase 

I of the two phase simplex method, as discussed earlier. 

If it is possible to solve this problem so that all 

artificial variables are nonbasic, the problem is 

considered canonical. If there is no feasible solution 

to the constraint set, at least one of the artificial 

variables will remain in the basis at optimality. In 

this case the appropriate message is printed and the 

program is terminated. 
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Once the Initial basis is defined it is necessary 

to find a feasible positive vector for all dual variables. 

This is done by first summing the values of each row 

in the tableau except for the basic columns. Then the 

minimum of the current right hand side divided by one 

plus the row sum is determined. One half of this value 

is used as the starting value for all nonbaslc dual 

variables. The values of the basic variables are then 

calculated by subtracting the product of the row sum 

times the nonbasic variables from the current right hand 

side. This procedure insures that all dual variables 

will be positive and that all basic variables will 

be larger than the nonbasic variables. 

k»k'-   Stopping Conditions- 

The final decision to be ?ade concerns the stopping 

conditions for the algorithm. The program is checked 

for optimality and feasibility if the maximum relative 

cost and the minimum of the product of relative cost 

times the dual variables equals zero or if the step 

size along the direction vector at any iteration is 

less than some predetermined value. This step size was 

chosen to be 0.0001• To test for optimality the primal 

variables are calculated and the values of the primal 

objective function and constraints are determined. If 



the dual objective function differs from the primal by 

less than 0.1% the problem is considered optimal and 

the solution is checked for feasibilty. If all of the 

primal constraints are less than 1.00001 the problem 

is considered feasible and the final solution is print- 

ed. When calculating the primal variables from the dual, 

only those equations corresponding to terms in active 

primal constraints are meaningful. An inactive primal 

constraint would have all dual variables equal to zero. 

Any dual variable less than 10  is considered to be 

zero for this transformation. 

k,5:  7ero Degrees of Difficulty- 

As mentioned earlier, the subroutine LEQT2F (5) 

is used whenever a zero degree of difficulty problem 

is encountered. A completely separate section of the 

program is used to handle these problems. The linear 

equations solved are the initial dual constraints, 

which form a full rank set of equations if there are 

zero degrees of difficulty. Then the primal variables 

are calculated using the same routine as used in the 

main program. 
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5: Cqnclusions- 

5.1: Advantages of the Modified Convex Simplex »'ethod- 

The modified convex simplex algorithm (k)  provides • 

technique whereby high degree of difficulty posynomial 

geometric progra-is can be solved. One advantage of using 

this method is that it works out of the familiar Simplex 

tableau. In fact, the linear simplex method can be 

shown to be a special case of the convex simplex, "any 

programs already exist for solving the regular simplex 

method and the modified convex simplex only changes 

these in tho determination of the variables to change. 

This makes it easier to progran this algorithm and 

easier for operations researchers who already have 

knowledge of the simplex method to understand it. 

This method will work on any problem which can 

be put into canonical form. Certain other solution 

methods require that inactive primal constraints be 

identified and eliminated from the problem or slack 

variables added before it can be solved. The convex 

simplex method makes no such requirements, although if 

inactive constraints are eliminated the method will 

converge more rapidly (?). However, the block decreases 

in the algorithm are equivalent to eliminating inactive 

primal constraints and therefore cause -ore rapid 
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convergence of the problem. 

5.2: Limitations of the Method- 

There are some limitations on this algorithm. The 

first being that it can only be used to solve posynomial 

problems. This just means that any problem must be 

in the form of a posynomial program before the algorithm 

is invoked. Techniques have been proposed which could 

transform signonial problems into posynomials (7). If 

the user were to make this transformation the resulting 

posynomial program could solved using this algorithm. 

Another limitation is on degenerate problems, a 

degenerate problem being one in which a primal term 

can approach zero without causing any other tor- to 

approach infinity (2). This could lead to basic variables 

which are equal to zero and therefore non-convergence 

due to cycling. The result of this degeneracy on the 

dual is that it won't be possible to find an initial 

positive dual feasible vector. 

This algorithm will only work on canonical (non- 

degenerate) problems. It may be desirable to try to 

identify degenerate problems initially so as not to 

spend time trying to solve an insoluble problem. The 

only sure way to identify degenerate problems is if a 

primal variable has all exponents of the same sign. 
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Otherwise there are no hard and fast rules to define a 

degenerate problem. Tn general a progran vlth a much 

greater number of negative exponents is wore likely 

to be degenerate than one with a balanced number of 

signs or with more positive than negative exponents (2). 

However, this is Just a relative measure and the only 

way to bo sure that a problem is not canonical is to 

attempt to solve it. 

5.3: Computational Results- 

Test problems were solved using this algorithm 

with up to 16 degrees of difficulty. (Those problems 

are presented in appendix C) The results are summarized 

as follows: 

Problem Primal     System    Number of 
Number    DOD   Variables   Seconds  Iterations 

1 0 4 3.5 - 

? 1 3 4.0 4 

3 6 3 4.9 41 

4A 10 7 6.8 45 

4B 10 7 '4.9 '54 

4C 10 7 20.0 254 

5 ?6 4 7.7 68 

In general, it is observed that solution time 

increases as degrees of difficulty and primal variables 
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increase. However, tines may vary greatly oven for 

problems with the same number of variables and degrees 

of difficulty. Problems **A, B, and C were taken from 

a paper of geometric programming test problems (9)» 

They differ only in the value of one exponent in the 

objective function, yet there are dramatic differences 

in solution time and number of iterations. This illus- 

trates sone of the difficulty in predicting the tine 

needed to solve a problem Just by observing properties 

of the problem. 

Sone general statements about the algorithm were 

raade by Beck and Ecker. They found that "when the 

coefficients in the primal problem differ by many 

orders of magnitude, an extremely precise dual solution 

is necessary," (*♦) and therefore a longer solution tine 

is required. Of course "many orders of magnitude" and 

"extremely precise" are subjective descriptions which 

don't lead to precise classification of problens. 

However, everything else being equal, a problem with 

coefficients which differ to a larger degree than 

another problem will probably take more tine to solve. 

"A final observation is that the sore nonlinear the 

primal program, the easier it is to solve the dual 

program." (2) Nonlinear is also a subjective tern, but 
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it basically refers to the number of exponents which are 

not equal to one or zero .for each priraal variable in 

each tern. 

In sura-ary, although there are sone basic rules 

which can be applied to try to predict the solution tire 

for a given problem, there is a great variation anong 

problems conforming to these rules. The only sure way 

to know how difficult a problem is to solve is to go 

ahead and attempt to solve it. 
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6: Areas of Future Study- 

6.1: Generalized Geometric Programraing- 

A method has been proposed by Avriel, Dembo, and 

Passy (7) to transform signomial problems into posyno- 

mials, although the transformed problems still have the 

problem of local optimum. This method should be studied 

as to the possibility of using it to generalize the 

modified convex simplex method to allow solution of 

signomial problems. 

The authors also present a technique to solve 

generalized geometric programs via a cutting plane 

algorithm. Some computational results were included 

which suggest that this technique could be used to 

solve very large (high degree of difficulty) problems 

with a relatively short computer times. These results 

indicate that further examination of this algorithm 

would be warrented. 

6.?: Augmented Geometric Programming: 

Another algorithm worth further study was proposed 

by »'cKamara (8). This procedure involves formation of 

an augmented problem with zero degrees of difficulty, 

'.'/hen the augmented program is formed slack variables 

with unknown exponents are added to the problem. The 

algorithm involves solving a series of zero degree of 
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difficulty problems in order to estimate the optimal 

exponents. Computational experience with this technique 

suggests that it nay be efficient for solving high degree 

of difficulty problems, 

6«3: Surrogated Geometric Programming- 

One final algorithm worth mentioning is presented 

in Beightler and Phillips (2). Specifically it is the 

Surrogated Geometric Programming algorithm. This 

algorithm also involves solving a series of zero degree 

of difficulty problrms. In this case the primal constraint 

set is replaced by a surrogate constraint which is a 

linear combination of the constraints. In this constraint 

surrogate multipliers which must sum to one are 

introduced and the algorithm consists of finding a 

feasible set of these multipliers. Basically a series 

of zero degree of difficulty problems are solved in 

order to move from superoptimality to feasibility by 

varying the surrogate multipliers. The only problem 

with this technique is that the speed by which it 

converges depends upon the initial choice for the 

multipliers and there is no set method of choosing them. 

6.1*: Other Areas of Study- 

There are many other algorithms which can be used 

to solve posynomial geometric programs, however most 



of these are variations of those already mentioned. A 

comparative study of these algorithms would be valuable 

in order to find one standardized solution method, ftith 

the realization of the value of geometric prograraaing, 

the value of finding the most efficient technique for 

solving these problems would be significant. 

Further study into the best method for solving 

signomial geometric programs would also be valuable. 

For years people have been faced with the problem of 

solving generalized nonlinear optimization problems. 

Many of these problems are in the geometric programming 

problem form or could be transformed easily into this 

form. Even functions which don't seem readily transformed 

could be approximated by a power series expansion 

with the accuracy desired determining how many terms 

to include. A generalized geometric programming 

algorithm would be a powerful technique for solution 

of these problems. Further study into developing such 

a technique could make it possible to solve some 

problems which previously had been almost i-ipossible 

to solve. 
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Theoretical Basis for Geometric Programming (1) 

Geometric Programming is based on the relationship 

between the geometric and arithmetic means. The arithme- 

tic mean of n numbers (or functions) U. being: 

n 
A = T    (Ut/n) 

and the geometric mean is defined by: 
n 

G =TT«l/n 
i = l x 

The relationship between these values is known 

as the geometric inequality and is represented as: 

A» G (1) 

as long as U. is any non-negative tern. 

This inequality is easily shown to be true by 

the following operation on an obviously true relationship 

(for n=2): 

(Ut - U2)
? 2 0 

Uj - 2U,U2 + U2 - 0 

U? + PU1U2 * 4    * ^U1U2 

The square root of this last inequality gives inequality 

(1), for n:?. For n=k  the inequality becomes: 
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*u, ♦ *u2 ♦ iu3» lvk » ufu^u|u* 

If U2= U,= U. this can be rewritten as: 

*u, *(3A)u? >uju!p
A) 

Therefore the relationship holds even for weighted 

means as long as the weights sum to one. 

The Dual- 

If a generalized posynomial with terms: 

U - c t*11 t°i? ••' t*±m ui " cit1   z? m 

is to be minimized, the geometric inequality can be 

stated as: 

d  dp    d 
d.U. ♦ d3U3+ ... ♦ d U > U.  Up ••• U„n I!   c c. n n   \       c n 

where d. are arbitrary positive weights which sum to 

one. If we let u. = U.d., the inequality becomes: 

d.      d- d 
u1 ♦ u2 ♦ ... ♦ un > (u/dp  (u2/d2)  ,..(un/dn) n 

This right hand side is termed the pre-dual function 

V. If the original terras with variable t. and coeffi- 

cients c, are substituted into V it becomes: 

di       d? dn  D1    Dm 
V(d,t)=(c,/d,) '(c2/d2) ^...(cn/dn) 

n t,'...tn
B  (2) 

where the exponents D. are: 

**    tt   dia±i     '   Js1,",,'n 

th where a. . is  the exponent of t, in the i       term, 
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If the weights, d., are chosen so that all D. equal 

zero, V(d,t) no longer depends upon t. and becomes 
0 

the Dual function v(d): 

d.      d. d 
v(d) =(c1/d1) '(Cp/d.,) "...(cn/dn) 

n   (3) 

It can be shown that the values of d. which make the 

D, vanish also give the upper bound on v(d). The forn 

of the geometric inequality makes it obvious that if 

an upper bound on v is found, it must also be a lower 

bound on the loft hand side. Therefore to -tini^ize the 

original function (the left hand side) it is only 

necessary to find the point where the D. equal zero, 

which is defined by the following equations: 

d±  = 1 (k) 

.Tl 

Dj = 0      ,  J=1,...,m        (5) 

Equation (4) above normalizes the weights to 1 and is 

known as the normality condition. The equations 

represented by (5) are terraed the orthogonality condi- 

tion. 

The use of these conditions to solve posynomial 

problems can best be illustrated using an example. 

Suppose we have the following problem: 

Minimize  40      ♦ '♦Otpt* 
'iV, 
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subject  to: 

♦     .tit, 
<L    1 

tlt3 *     -^ 

Substituting u. for each term in the functions this 

problem becomes: 

Min gQ = u, ♦ u2 

S/T g1 = u, ♦ u, S 1 

Because there is a constraint, a more general 

form must be used where all of the weights are no 

longer normalized. If we use w. for the unnormalized 

weights and k as their sum, the relationship between 

the normalized and unnormalized weights is: 

m±  * kd±    , i=l,2,.5,Jf 

Substituting w,/k for d. in the geometric inequality 

gives: 

w/k w A 
u1   ♦ u2+  ...   + u^tUj/f,) •••(un/wn> k 

Taking both sides  to  the k      power gives: 

(u,4  ...  +u^)k > (u/w,)   1...(un/wn)  n kk 

Using this inequality on the problem in question wo 

get: 

«o     -  <W     <W      ko 
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Multiplying    the  first  inequality by both sides of 

the  second gives: 
K W V W W If lr 

«o°   -   (u/V   1(W ?(W 3(UA} * ko° ki' 
If we still normalize k  to 1 the predual function is! 

w w  k 
go(t) ^(u/w,) '...(u^) 

k  k,1 

The dual function from this predual is: 

(c/w,) '(Cg/Wp) 2(c3/w3) 
3(c^/w^) 4 k,1 

Since k.  = k.-5 ^ = k.-5k. , this becomes: 

w       w        w w 
(c/w,) Vcg/wg) ?(c3k1/w3) 

3(c^k/w^) k 

with the normality and orthogonality conditions of: 

w, ♦ w2 =  l 

-w,     ♦ w, + w,  =0 
i        3   k 

-w, + w-     ♦ w.  s 0 

-w. ♦ w- ♦ w,      =0 

which gives the solution: 

w, = ?/3       w2 » 1/3      w3 = 1/3     w^ s 1/3. 

Therefore the final solution can be had from the 

geometric inequality as: 
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Therefore the minimum possible feasible value for g 

is 60 and the rpoblem has been solved. 

If the values of t. are desired, it is necessary 

to go back to the meaning of the optical weights. 

Each weight represents the contribution of the corresp- 

onding term to the equation which it is in. Therefore, 

for the problem just solved the following equalitios 

define the primal variables: 

r-£L_      =     (2/3,(60)  =    w,go 

^Ot2t3      = (1/3M60)    =    w2gQ 

t t 
-—-*      =    0/3)/<2/3)  = w3/k, 

V? =    d/3)/(^/3)    = w^A, 

which can be solved to give: 

t] s 2       t2 -  1      t, = 0.5. 

(The information in this appendix comes from Duffin, 

Peterson, and Zener (1). For more details, please refer 

to this reference) 
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Appendix  B 

Using tho  Program 
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Before the program can be used the problem must 

be in the proper fom. Th,i8 program requires that the 

problem first must be in canonical form. This "eons 

that the objective function "iust be a minimization 

and all constraints must be less than or equal to one. 

Ko strict equality constraints are allowed nor can 

any coefficient in the problem be negative. The program 

has been dimensioned so that no more than 19 primal 

variables are allowed. Also, only 19 constraints and 

?0  terms per constraint can be used. Finally no more 

than 39 total terms can be in the primal problem. 

The program has been designed to run in the batch 

mode. The user must provide four types of data cards 

which describe the problem to be solved. The program 

will then either conclude that the problem is not 

canonical (degenerate) or it will find the optimal 

solution and print the values of the optimal dual 

and primal variables and objective functions. 

The data cards needed are as follows: 

I) Problem Description- 

0 1 
5        5 

NVAR     NCNSTR 

FORMAT (I5,5X,I5) 

where: KVAR = number of primal variables (integer) 
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NCNSTR = number of primal constraints (integer) 

II) Number of terms- 

FORMAT  (20I*f) 

On this card the number of terns in the primal 

objective function and constraints must be listed 

in order in the format described above. 

III) Coefficients- 

FOFMAT  (5E16.10) 

Each card has the coefficients of one primal 

constraint or the objective function. These cards all 

adhere to the above format. If there are more than five 

terms for any given equation just use as many cards as 

nocossary until all the coefficients are listed. For 

example, if one constraint had twelve terms, then 

three cards would be needed with only two values on 

the third card. 

IV) Exponents- 

These cards follow the same fornat as for the 

coefficients, however each card will have the exponents 

of all variables for a given term. An exponent must 

be included for every primal variable for every term. 

If a primal variable is not present in a given tern, 

an exponent of zero must be placed in the proper 

position. 

-55- 



Once all the data cards are typed they oust be 

put in the proper order. First must be the problen 

description card followed by the number of terns card. 

Next the coefficient card for the objective function is 

input followed by the exponent cards for all terns in 

the objective function. Finally, the coefficient cards 

for the primal constraints are input followed by the 

corresponding exponent cards. 

An example of how to use the program follows. 

The data for the following problem is given on 

the following page: 

Minimize x.  x-  x. 

Subject to: 

2Xj ♦ Xp + 3x,S1.0 

x. + Xp «- x <1.0 

x}   ♦ 3x? + 2x,Sl.O 

x. > 0.0  , for i=1,2,3 
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The output  from the progran  for this problen would 

be: 

EQUATION TE 

0 1 

1 1 

1 2 

1 3 
? 1 

2 2 

2 3 
3 1 

3 2 

3 3 
DUAL OBJECTIVE FUNCTION  VALUE * 

DUAL VARIABLE VALUE 

1.00000 

.70235 

.28238 

.63902 

.00000 

.00000 

.00000 

• W65 
.71762 

.36098 

202.77702 

PRIVAL VARIABLES 

KIT'BER VALUE 

1 .2162? 

2 .17381 

3 .13119 
PRIMAL OBJECTIVE FUNCTION VALUE * 202.77702' 
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Appendix C 

Test  Proble-ns 
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Problem Number One (2)- 

Minimize x?#8 x}'k 

Subject  to: 
-2-1 -1   .* . 

x1     x3    + X2X3    " ' 
-1 -1-1    ^  , x.x.     ♦ x., x.      rs 1 

I   4 2    4 

Solution: 

x, = 0.05556 x2 = 108.00 

x, = 432.00 x = 0.06481 

Objective function = 2.7844 

Problem Number Two (2)- 

Minimize O.^x^'2  ♦ 0.5X"1 ^x"1 '^x"1 ,/f ♦ O.Px-J*5 

Subject to: 

0.8x1x3 * 1 

I.PXjX*1  S 1 

Solution: 

Xj =  1.223 x2 * 1.468 

x3 = 0.861 

Objective function = 0.9189 
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Problem Number Three (2)- 

... . .      -1.-1-1 
Minimize   x  x, x.; 

1  2  3 

Subject to: ^ 

2x, *     x? ♦ 3x3 S 1        J 

x. ♦  x- +  x- S 1 

x. + 3Xp ♦ 2x_ S 1 

Soluti6n: 

x, = 0.21633 x2 = 0.1738 

x    = 0.13H8 

Objective Function = POP.777 

Problem Number Four A, B, C (9)- 

vininize lO.OXjXp x'x^x^ ♦   1%0x~  Xp  x,x,xl x~* 

—2       —l   — ? ? 2 —i   A-    —2 ♦ 20.Ox"^  XpX~ xZ'xg ♦  25.0x.XpxI xl xT  x„ 

Subject  to: 

0.5x*x~}X£?x    * 0.7x3x?x~'>x6x*  ♦ O^x'^x^x2/3 x* S 1 

1.3x~*x.,x" x~ x,  ♦ 0.8x,x~ xZ x,  *■ 3»1x~ x|x~ xZ x/3< 1 

2.0x1   xZ*'   x, xZ    Xrj J + 0.1 x2  x~*  x5 xT  x~* 
l 1 — P i 

♦ 1.0x"j" Xp x* x,     ♦ 0.65Xp"x, x, X/ x„   <   1 

0.2x~?Xp x^x* x^/3  ♦ 0.3xj x?
? x3 x^/3x~?/3x* 

♦ O.Jtx"J3Xp2x3 x^ x3/Zf ♦ 0.5x~2x^ x*     ^   1 
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Probler. A: a=-0.25 

Solution: 

Variable A 

B: a*0.125   C: a»0.50 

B 

Obj. Func. 1809.7615 9H.87957 543.66638 

xl 2.8566276 3.8955214 4.3919085 

X2 0.61083257 0.8086847 0.8546317 

x3 2.1503944 ' 2.6626285 2.8416293 

x4 4-7171337 4.2983005 3.4013674 

X5 
1.0002048 0.85357785 0.7227534 

x6 1.3487370 1.0953123 0.87052969 

X7 0.03160686 0.02730898 0.02464651 

Problem Nunbor Five (2)- 

Miniraize 20x.+10x +30x,+15x, *• 1500x~ x^ x~ x" 

Subject to : 

10x1 ♦ 5Xp + 5x, ♦ x 260 

2x, + 6x? + 8x, ♦ 4x. 2 37 

4Xj ♦ 3x-> + 7x, + I4x^ 2 45 

x1 ♦ x- + x, ♦  x, 2 15 

Solution: 

x, = 2.64 x2 = 2.68 

x3 = 1.33 

Objective Function = 267.98 
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