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Abstract

This Thesis is an investigation of a techniqueﬁ
which can be used to solve geometric programming
problers. Geometric prograrming is a rethod by which
a certain class of nonlinear optimization probdblers may
be solved by solving an associated problem with a
concave objective function and linear constraints.

This convex progran is formed by a dual transformation
of the original (priral) probler.

Several techriques were investigated which could
be used to solve linearly constrained convex programs.
A method proposed by Zangwill (3) which uses a genecral-
ized Simplex nethod, was concluded to be well suite? to
solving such problems.

Several difficulties were encountered with uging
this Zonvex Simplex method to directly sGolve geonetric
programs. An alogorithr which modified this method to
deal specifically with these problems was found to
have been proposed in a paper by Beck and rcker (4).
This algorithm was subsequently chosen as the -~ajor
area of concerntration of this thesis.

A conputer progran was written to solve gedb-etric
progranning problens using this modified convex sirplex
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method. Test problems were solved using this computer
program and the CDC 64,00 ‘computer at Lehigh, in order
to examine the operation of this algorithm. Several
conclusions were drawn as to how the algorithr could be
expected to perforr on various classes of probloms,

Ta general, the modified convex simplex ~ethod
was found to be quite useful for solving high degree
of difficulty geometric programs. Turther study could
lead to generalization of this algorithm to allow
solution of an even broader range of proble~s, specific-
ally signorial problems. Finally, a comparative study
of this and other algorith-s was proposed to provide
a standardized solution technique for &all geo—wetric

prograrning proble-s.



1: Introduction-
1.1: Bacvground-

5eo~-etric program~ing is a techni jue developed by
ruffin, Peterson, and Zener ‘1) to solve a particular
class of nonlincar mathematical opti~ization problers.
These proble~s are characterized by posyno ial (positive
polyno—-izl) objective functions and constraints. A
rosynomial is any polynormial function which has only
positive coefficients. They found that ~-ary proble-s
of this forv arise naturally in such fields as econo~ics
and engineering design. The basic fors of these proble~s

is as follows:

To
Minimize y (x) = tgl CotPr(x)
subject to
N
nix) = 1 oeQlx) <
x >0
where
N a
otn -
Pt(f) = IT Xq : t=1,2, ..., T°
ns)
N a
- 1tn | -
Qt(g) '];r‘ Xn » t l' 2. es ey T]

(?)
th

where: € is the coefficient of the i ter~ in

t
the nth constraint (~ust be positive).
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X 1s the nth

n primal variable

is the exponent of the nth variabdble,

tth ternm, mth constraint., (m-0 {g
the objective function!

Tm i8 the number of ter=ms in the m

a
mtn

th

constraint.
I' 18 the nu~ber of variabdbles.

M is5 the nu-ber of constraints.
This program is refered to as the primal. "he
rmethod relies on solving the assnciated dual problem
of the form:

mt
Maximize d(w) = TT -rr mt", _mt"mo
h m=0 t=] “mt

subject to

(2)

where:(J , is the dual variable associated with

mt
the tth ter in the nth constraint.

The dual variables represent the proportion of the

4=



associated priral ter- to the value of the ejuation which
it is in, either objective function or constraint.
1.”: Theory Behind the Technigue-

The relationship between the objective function
of the primal gprogra~ and the dual objective is entirely
analogous to the relationghip between the arithrmetic and
geormetric means.{(1) It is this relationship which is
the basis for ~uch of the theory of geometric progra--ing
and which led to the name of the technijue. This relation-
ship assures that if a maxi=wu- value can be found for
the dual progranm, it ~ust aléo be a mini~u~ for the
pri~al. In fact, the test of opti~nality of the dual
progrum is convergence of the dual objective function
with the pri~al. (A more detailed discussion of this
topic is included in appendix A)

Zach variable in the dual for-ulatiorn corresponds
directly to a tern in the pri~al program, the values of
these ter- s being the proportions —entioned ecarlier.
These prorortions are independent of the coefficients
of each term. This means that no —atter what coefficients
are used,.the dual variables will give the opti-al
solution. This can be especially useful if each ter-

has so-e physical significance and there is som=e



uncertainty in the coefficients. The geormetric progra-n-
ing solution will give useful results which will lead

to optimality no matter what uncertainty exists,

1.3: Problem Solving trracticalities-

‘The method of solving for these dual variables, in
many cases, rcquires rerely solving a set of sirultan-
eous linear equations. A loox at the dual cdnstraints
reveals that they form a set of !'41 equations with T
unknowns (T is the total number of pri~al ter=s in the
problem). If N+l equals T a unique solution cxists which
can be solved for explicitly, as'long as the cquations
are nonsingular. If the nunber of ter=ws in the pri~al
progra—~ is greater than one plus theinunber of variables,
there are an infinite number of solutions to these
equations,

Recause the difficulty in solving these problenms
increases as T-(Y+1) increases, this value is called
the degree of difficulty of a problem. It represents
the nu~ber of dual variables which cannot be explicitly
determined from the dual constraints. Yany techrijues
have been proposed to try to solve the proble~ of high
degree of.dirriculty. However, even with high degrees
of difficulty, geometric program-ing is valuable in

that it allows the solution of a highly nonlinear
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proble~ by solving a prodble~ with a concave objective
function and lincar constraints.(?)

The cornstraints of the dual for—ulation are obvious-
ly linear, and the objective function is easily schown to
be concave. Using the logarith~ic form, the objective
function beco=es the sum of the following teres,
wmt‘“(‘cmtwno/w-—.t\ for t=1,e0e,T_; m=0,00,Y. AS

long as the dual variables are rositive (which is a

reguirement of the method) each of these ter~s is
positive and therefore the su~ of these terrs will be
a concave function.(3)
1.4: Generalized Gecmetric “rogra~—ing-
'11 of the above discussion deals with pogyno-ial
problers only. 'n practice problems ~ay co-e up which
can only be described using signo—-ial (signed j;olynomial)
functions. A signo-ial is any polynomial, which =may
have either positive or negative coefficients. There are
considerations unicue to signomial problers thich need
not be addressed when dealing with posynomials. ~or
exariple, because the objective function of the dual
problem is no longer concave, the solution of a signom-
ial problerm will not necessarily yleld a global optinua.(z}
Posynomial problems occur often enough in practice
for a method which sclves posynonial problems only to

-7-



be valuable. “Yethods have also‘%een proposodlvhich would
transfor~ signomial problers in;o posynomials for
solution, thereby eliminating the need for a special
algorith~ to solve signomials in many cases (7).

Ffor these reasons this thesis will be confined to the

discussion of posynomial programs.



2: Algorithrs to dcal with degrees of difficulty-
2e1: Low Degrees of Difficulty-

The first step to take when confronted with degrces
of difficulty would be to examine how the proble~ was
formulated. It may be possible to eli~inate certain
terms from the problem thereby reducing the degree of
difficulty(?). Nf course, for —~any proble~s it isn't
possible to eli~ninate degrees of difficulty. Tor this
recason there must be some method of decaling with degreos
of difficulty.

One way to solve this type problem is to solve the
dual constraints in ter~s of the variables represented
by the degrees of difficulty. This solution is then
substituted into the dual objective function. “inally,
this function is optirized either by differentiation
or by searching over the range of the untnown variables
(?)e
2.7 Yigher Tegrees of Nifficulty-

The technijue just described will obvioutly becore
unwieldy very rapidly for =ore than two or three degrees
of difficulty. Therefore, so=ie other techrnijue —nust be
used. "ne way to approach this proble: is to take
advantage of the fact that the dual program is actually

a convex progrannming problem  concave objecctive function

-9-



and linear constraints). 7angwill proposed a method to
solve such problems which is based on the Simplex =method.
The details of this method can be seen in the reference
(3).

Beck and Ecker further modified this Convex Simplex
method to allow its uge for solving geometric programm-
ing problems (4). This technique appears promising for
solving high degree of difficulty problems and will
be the primary topic of the rest of this thesis.
2+3: The Modified Convex Simplex Method-

Two major modifications were needed to make the
Convex Simplex method applicable to geometric programnm-
ing. The first was to handle problems with inactive
primal constraints. If an inactive primal constraint
exists, all dual variables associated with that constr-
aint will be zro at optimality. If the variables
associated with this constraint are allowed to vary
individually the technique could cycle infinitely between
changes in these variables, causing non-convergence of
the method (2).

In the original method only one variable was allowed
to change at a time. Beck and Ecker modified the algorithna.
to allow blocks of variables corresponding to inactive
primal constraints to change at once (4). This change

-10-
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eliminates the possibility of cycling, thereby insuring
convergence. .

Also, at each iteration a gradient vector conposed
of the partial derivatives of the dual objective function
with respect to each dual variadble ~ust be computed. (The
equations used to calculate this gradient are given in

step 1c of the algorithm) If any dual variables are

allowed to become zero, the components of this gradient
become difficult to evaluate due to a zero term in the
denomninator of the gradient equations. The block decrease
provides that the gradient components within the block
remain constant as the variables upproach zero, 80

that the gradient is well defined evern with inactive
primal constraints (4).

The second change had to do with the initial basic
feasible dual solution. "angwill required that all
nonbasic variables be zero initially (3). Beck and Ecker (4)
changed this rejuirement so that all dual variables must
be positive (non-zero and non-negative) initially. This
requirement insures that if an initial vector confor=m-
ing to these conditions can be found, the problenm is
canonical and a solution exists. It also provides for
a gradient vector which is well defined initially, so
that no approximations need be made. Zow a more detailed




description of this alorithm will be given. ()

Step O: Initializatjon-
Set up the initial tablesu using the exponent matrix
of the prirmal progran. This tableau can be represented
by the matrix equation Ty = b ; where y i8 the vector
of dual variables, b is the right hand side of the dual
constraints, and T is the body of the tableau., The co=p-
onents of T are represented by tji where j is the row
‘and 1 is the colu=wn with each row corresponding to a
basic variable and each column with a dual variable.

These components initially have the values a from

mtn
the earlfér notation with each row containing the 'a‘
exponents associated with a given primal variable. One
more row is then added which has ones in the columns
corresponding to the dual variables associated with the
primal objective function, and zeros elsewhere. The
initial right hand aidg has a one is this last row

and zeros elsewhere.

The phase I Simplex is then used to pivot in an
initial basis. In the phase I Simplex a linear progran
is solved using the given constraints and an objective
function of the su= of the artificial variables. rro=
the solution of this problem a positive initial dual
feasible vector can be calculated. If such a vector

-12-



can't be found the problem is not canonical and the
algorithm is terminated. (Otherwise, proceed to step 1,
Step 1:
Step one is performed in five stages which result in
the values which are needed to determine the nonbasic
variable to change.
a) The first stage i8 to calculate the sum of the

dual variables associated with each primal conatraint,/\k.

Ak :Zyi ’ k:],?,ooo,”

(k)

A <o

(k) represents the dual variables associated with the
kth'primal constraint, k=0 represents the objective
function.

b) Next the components of the objective function
associated with each dual variable are calculated as
well as the total value of the dual objective function.

These will be used to determine the gradient vector

components and are calculated as follows:

v, = |y.ln(c /¥4) » ¥, O
i i mt mn 1 ? i for 1:".¢.’T
o ’ yi =o

)

-V = v

i=1 1

This equation actually describes the natural log of

the dual objective function, so for comparison with

-13-



the primal the value exp(V) must be used,

c) Using the objective function components calc-
ulated above, the gradient vector components are now
computed. This vector consists of the partial derivatives
of the objective function with respect to the current
dual variables, and is used to describe the contribution
of each dual variable to the objective function, it
is calculated as follows:

vi/y1 -V y for 1 within the objective
G = function

vi/y1 ,.elsewhere
for 1 = 1,e0e,T

d) Now the relative cost vector is computed. This
vector wili be used to determine the nonbasic variable
to change. It represents the change in the objective
function for each unit chanéé in the dual variables,
and is calculated as follows:

. Ns1
c} = G 'g,tJiGbJ ,

131’000"1‘

where Gb is the gradient component of the Jth
J

basic variable, and t is as defined earlier,

Ji
e) Finally, the optimal changes in the nonbasic

variables can be calculated. These values will be used

in a later step to determine which nonbasic variable

is to change if a block decrease isn't indicated.

“14-



They are:

. .
G 1:???..f(c1)
. .
Ca? =1=1Tf?.,r(ciyi)
1f C;‘ = C;2 = 0, the current dual vector is opti=al and

proceed to step 7 to calculate the optimal primal var-
iables. Otherwise, continue to step °~.

Step 2: Check for possible block decreases-
If there exists a block of variables corresponding to
a primal constraint for which all C; are less than zero,
then that block is a candidate for a possible decrease.,
If it is feasible to set all dual variabdbles in the block
to zero, a block decrease is indicated and proceed to
step Se to determine the direction vector. Otherwise,
continue to step 3.

Step 3:
The relative cost vector components represent the increase
in the dual objective function for each unit increase in
the corresponding dual vafiable. If one of these costs
is negative and the dual variable is positive, that
variable can be decreased to bring about an increase
in the objective function. The éreatest increase in the
objective function will result from either an increase

in the dual variable with maximum positive relative
-15-




cost or a decreasc in the variable with the ~ininun

product of relative cost and dual variable., Therefore,
L4

the variable to change is determined using CB‘

[ ]
and caZ

as follows:

ir ¢, =qc’.| select to increase
sl gr' ? Yg ysl ’

*<lc .l
ir C81 CsP s 8Select Vg

Yg2 to decrease.

Where: Yg1 is the dual variable associated with
C.y» ¥g» 16 the variable associated with C_,, and y,
is the variable to change.

Now proceed to step 4.

Step 4:
If Yg is greater than zero go to step 5a, otherwise y8=0
and the variable to be increased is in a blocx which
hac been set to zero by a previous block decrease. In
this case either a block increase is indicated, or
the ratios of the dual variables to /\_ can be adjusted
80 that a strict increase in the dual objective function
is guaranteed.

These ratios were calculated when the block was

last decreased to zero using the ejuation:

ry = yi//\1 where (1) is the block affected
and 16 (l)o

The anount by which the ratios associated with
negative relative costs can be decreased and those

-16-



associated with positive relative costs increased, /\

and ﬁ respectively, are calculated as follows:

JAY

%+r1(t-exp(cz)) y where 5‘ -.-[ 16(1)' c;>O]
Zri(exp(C;)-l) , where 5' =[ 16(1)' Ci‘ O]
6..

1t /\ 1s less than or equal to /\, the relative

A—

costs can be rade all non-positive by increases in ry

for 165‘ and decreases in r, for i€ 5'. These

i
increases are the components of A‘ and are offset
by decreases in r, for /\'. Then proceed to step 1d.

1t /\ is greater than /N the increases in the
ratios for /X+ cannot be offset by decreases in the
ratios for /Y. In this case the relative costs in
the blociz can all be made non-negative by appropriate
decreases in r, for /N and the direction vector for
the block increase is calculated in step Sde.

Step 5:
Step S5 involves calculating the direction vector for
an iteration which describes the maximum feasible
change in the dual variables..This step is divided into
five parts to deal with all possible cases.

a) ys is to be increased and at least one co=ponent
of the tableau is column s is positive. In this case

the increase in Vg could drive some basic variable,

-17-



to zero. The direction vector, d, is determined as

follows: .
d = wmin (y, /t st 0)
8 T §i1,...,E4105 387 38
db = -tJB dB ’ J=I,000’N"
J
di =0 s 6lsewhere.
db is the direction vector component for the jth
J

basic dual variable and ds is the component for the
variable to be increased. Since the move along the
direction vector 18 accomplished by adding some fraction
of each direction vector component to the corresponding
dual variable, this choice for ds insures that all dual
vériables will remain non-negative.

The direction vector components for the basic vari-
ables come from the fact that the sum of the dual varia-
bles times each term in the row must equal the same
value after the move. This is becagse each row is a
constraint which must be satisfied both before and after
the move. Therefore, if Yg is increased by de’ the comp-
onent of the row product due to Vg is increased by
tjsds for each rovw, and the basic variable in each row
must be reduced by an ejjual amount to keep each con-
straint satisfied.

Set 6:1 and go to step 6. 6 represents the

-18-



maximum feasible move along the direction vector.

b) Yg is to beAincrqgaed and- all coﬁpononts of
the tableau in column s are less than or equal to zero.
In this case nd matter how much Yg is increased, no
basic variables will be driven to zero. Since the basic
variables are not a concern, d8 could take on any real
positive value. For reasons of practicality d8 is set
to ' and 6= 100. The objective function may actually
be maximized for a move of greater than 100 times the
direction vector, but this will be taken into account by
future iterations. The rest of the direction vector is
deternined in the same manner as for 5a, then go to
step 6.

c) Yg is to be decreased. The direction vector is
determined similarly to step 5a, e.cept:

d = max(-~y max (y,. 7/t t,.=<?DJ))
8 8 21, eaa, el Oy 35' is

In this case the concern is not only that basic
variables are not driven negative, but Vg must also be
kept positive. The second maximization above insures that
the basic variables are never driven negative. If tja is
negative for a basic variable, that variable will bde

decreased by t ds’ therefore for any variable the

is

maximum value that ds can have is yJ/t for that

s

-19-



basic variable to remain non-negative. By taking the
maximization of these negative values this limitation
is at least met for all basic variables,

Then this value is limited by the fact that the
variable being decreased must also reamin non-negative,
This leads to the form of the equation above which
insures that d8 isn't larger than the magnitude of
this vériable.

Now 6 is set to ! and proceed to step 6.

d) An entire block, previously decreased to zero,
is being incrcased away from zero. The ratios correspond-
ing to the dual variables in the block have been adjust-
ed in step four so fhat ail relative costs are positive
within the block. The decrease in each basic variable

per unit increase in the block, 7; » 18 calculated

J

as follows:
7b = - thiri s fOr J=l,cee,hi¢l
J 1
for 1 within the block affected.

This equation is obvious when you realize that r
h

i
represents the proportion of the it variable to the
total contribution of the block to the right hand side,
Since each row in the tableau represents an equality
which must be satisfied, and the components of the rows

=-20-



don't change as the variables are adjusted, any changes
in the variables must take place so that the right hand
side equals the tableau times these variables, Therefore,
the amount that the right hand side will be increased
due to a unit increase in the block is given by the
negative of the equation above, and the basic variables
corresponding to each row must decrease bé an equal
amount to maintain feasibility.

The number of unit increases,zs s Wwhich can be
made in the blockx before driving a basic variable to
zero must now be determined as:

A = min (¥, /')’b l')’b <)
J=Vp00e,N+1 3 3 3

The ratio being minimized can easily be seen to
equal the number of unit increases which can be made
in the block before driving each basic vériable to
zero. The arount that any basic variable can decrease
can only be as large as the value of the variabdble
itself. By dividing each variable by the decrease in
that variable for each unit increase in the block, the
result is the number of unit increases which can be
nmade before the variable is reduced by itself. *ininiz-
ing this value assures that feasibility will hold for

all basic variables.



This need only be done 1if 7% is negative, because
if 4t is positive the basic variagle will increase with
increases in the block. If this is the case these varia-
bles don't constrnin the increase of the block. If
none of these values are negative, [&18 set to !
and 6=100. Otherwise, set 2:1. Then determine the direc-
tion vector as follows:

d, = r Z& s for i within the block being
increased

dbj= 7bJA’ for J'o",.o.,“"’

di =0 ,» elsewhere.

then proceed to step 6.

e) A block of variables is being decreased
towards zero. The ratios ri=yi//\k, for all i within
the block where k represents the block being decreased,

are calculated for use in case the block must be increas-

ed in a future iteration. In this case the naximun
feasible decrease in each variable in the block is

merely the current value of each variable. Then each

basic variable must increase by the sum of the correspond-
ing row components times the variadble values within

the block. These values have already been checked in

step three to insure that no bassic variadbles are driven

-2P=



negative., The direction vector is therefore calculated

as follows: .
d = Zt Yy » J'—",ooo,“*‘
bJ T Jji’1
di = =Yy s 1 within the block
di = 0 s elsewhere.

set 6= 1 and go to step 6.

Step 6:
This step is used to find the optimal move along the
direction vector. The direction vector defines the
maximum possible feasibdble cpanges in the dual variables.
However, a move of the maximum feasible amount isn't
necessarily optimal. This is because the derivative
of the objective function with respect to the direction
vector changes as the dual variables change. In the
regular Simplex this derivative reduces to the reduced
costs which are constants over the move. Therefore, the
maximum feasible move will also be optimal and all
moves will be along an edge of the feasible region.
FYor the Convex Simplex this is not the case and it is
necessary to find the optimal move which may be
within the region.

The location along the direction vector at any

~23-



point in the maximization is given by:
2, =y Ta,° , 0< T <o

In order fo maximize the objective funtion, the
point where the derivative with respect to 7 approaches
zero must be found. This derivative for any valuo of

is approximated by:

Z:Gi(zi)°di

where Gi(zi) is the gradient vector component given

Zye Since this is a continuous function in 7’, a search
along the range of 7 can be used for this opti-ization.

Once the optimal value of T has been determined,
the new values of the dual variables are given by zi.
Sort this new dual vector in descending order and pivot
the N+1 largest variables into the basis, If the value
of T is less than some preselected tolerance, proceed
to step 7 to deter-ine if the solution is consistant
for the prinal problem, otherwise return to step 1.

Step 7:
In this step the primal variables are estimated fron

the dual solution. This means solving the following set

of linear equations:

Z;aijzj = 'Gi , for all i with yi='0
-2~



.where ai‘1 is the exponent of the Jth variadble in

the 1*Pprimal tern, .

th

and ZJ = 1n(x is the J primal variabdle,

x
3 0 %
These equations can be seen to be the same as those
used to calculate the primal variables using the regular
geometric programming algorithm. In the regular GP

the terms in the objective function are equated to the

corresponding dual variables multiplied by the dual
objective function value. The other terms are equated

to the associated dual variables divided by the shm'

of the dual variables corresponding to the constraint
which the term is in. The equations given for the Convex
Simplex are the sare as taking the natural logarithns
of both sides of the equations just described. The left
hand side of these equations are obviously equal, and

a look at the egquations used to describe G, will easily

i
show these to be equal to the negative of the log of
the right hand side.

Now that these relationships have been established,
all that is necessary to obtain the primal variables is
to solve this system of linear equations and calculate
xJ by taking the exponent of ZJ. Usually this syste= has
more equations than unknowns, so either a least squares

solution could be used, or equations could be eliminated
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until a full rank set of equations is left, However,
it'e possible that a system of less than full rank ~ay
exist. In this case it is possible to increase the rank
of the syste~ by solving a subsidiary maxi~um proble-,
"A subsidiary maxirmum problem has essentially the sa=e
structure as the dual program, except that its objective
function is modified by replacing the nonlinear ter=s
corresponding to the positive components in the optimal
vector by linear terms." (4) Problems which require
subsidiary maximum solutions have been observed to
be very rare (4) and will therefore not be treated in
this thesis. For further details on this technique refer
to the reference (1),

Now the values of xJ which have been calculated
can be used to determine if the problem is optimral
and feasible. These values are substituted into the
primal objective function and constraints for this
purpose. If the constraints are close enough to being
feasible (less than one plus some tolerance) and the
primal objective function value differs from the dual
by less than so-e tolerance, the problem is solved.
Otherwise, proceed to step 1.

This completes the algorithm.
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3: An Example- Using the Modified Convex Simplex Method
The following problem, taken from Beightler and
Phillips (2), will be solved in order to illustrate the

use of this algorithm.

-] =1 &1
Minimize X, X, x3

subject to:

°ex, + X, ¢ }x3§1

1
X, + X, ¢ XSEI

x +3x?+Px =1

L 3

Step O: Initialization-

Initial Tableau

Basig

Var u, u, uj uu u5 u6 u7 ug u9 Uio R‘ Re R} Rb b
R' -1 0 0O 0O 0O O 0O 0 0 O 1 0 0 O |1
92 -1 1. 0 01" 0 0 v O O 0O v 0 0}0
93 -1 0 1 0O 01 0 O v O O 0 1 0|0
Rh -1 O O ' 0O O 1 O 0 O 0 O 1|0

The phase ] Simplex is solved by using the above
tableau to solve a proble~ with the following objective

function:

4
The final tableau after all artificial variables

Minimize R‘ + Ra + R5 + R

have been eliminated is: -
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Basic

Var u, u, uj uu u5 u6 u7 u8 u9 Yo b
u, {? 0 0 0 0 0 0 0 0 0 |1
u, o 1 o o 1 o o0 1 O O 1
us O O 1 0O O 1 o o0 1 0 1
uk O O o 1 O O 1 0O O 1 1

The initial dual vector is therefore, (1,1,1,1,
0,0,0,0,0,0). A positive vector is computed by setting
all nonbasic variables equal to one half of the minimun
of the right hand side divided by the sum of the nonbasic
columns for each row, which equals . The basic variables
are calculated by subtracting the sum of the nonbasic
variables times the nonbasic columns from the right
hand side for each row. The resulting initial positive
dual feasible vector 18 (1,¢5,45,¢5,425,¢e25,e05,¢25,.25,
e25).

Tirst Tteration-

First the nonbasic variable(s) to change must be deter-
mined.'The initial objective function vslue is 103,5133
with an initial gradient of (-4.6357,1.7%18,1.0586,

2o‘972,1.0986,1.0986,1.0986,1.0586,2.‘9?2,1.7918). The

relative cost components are computed as follows:

Cy = =4e6357 - ((=4.6397)(1) + (1.7918)(0) + O + 0)
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C; = 140986 - ((-4.6397)(0) ¢ (1.7918)(1) + (1,0986)(0)
+(2.1972)(0))

»

Cio= 127918 = (0 + 0+ 0+ (2.1972)(1))

giving the following vector (0,0,0,0,-0.69315,0,-1.,0986,
-0069}‘ 5, ’ 00986,"00[054?)0

The maximum relative cost is 1.0986 for u9 and

the minimum of the product of relative cost and dual

variable is -0.-747 for u,. Since 11,0986 is greater

?

than 0.2747, variable u9 is chosen for increase.

Now the direction vector is calculated.

d9 =min ( - , - , 0.5, =) = 0.5

The - indicates that tj8=o for that basic variable.

Because u, is the only basic variable with a nonzero

3
element in the ninth column, d}=-0.5 and all other basic
elements in the direction vector equal zero. This gives

a direction vector of (0,0,-O.5,0,0,0,0,0,0.5,0).

A search reveals that the optimal move along this
direction vector is at 0.5811. The new dual vector is
therefore; (1,0.5,0.20943,0.5,0.25,0.25,0.25,0.25,0.54057,
0.25), giving an objective function value of 122.069.

Since the new value of u. is greater than u is

9 3 Y9
pivoted into the basis in the third row. This will not
change the tableau given at the end of step O because
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the qinth column is8 already in the proper for~, but
this will not be the case for many problens.

Second Iteration:
The new relative cost vector is (0,0,0.40746 X 10'8,
0,~0.47785,-0.6549,-0.883%,-0.150358,0,0.1373). The

C1 associated with the second constraint; C;. C;, C;,
are seen to all be negative, therefore it is possible
that the corresponding constraint is inactive and a
block decrease is indicated.

The feasibillity of the block decrease is determined
by calculating the direction vector components for the
basic variables and deternining if any of these basic
variables could be driven negative. These basic compon-
ents all turn out to be positive so that the block
decrecase is feasible with a direction vector of
(0,025,0,¢C5,=025,=025,=425,0,425,0). The maximum
objective function is found with the block set all the
way to zero with a value of 194.268.

Primal Variable Estimation:

After 4! iterations the following dual vector is found,
(1.0,0.7023%5,0.28738,0,63902,0,0,0,0.29765,0.71762,
0.36098). *hich gives a gradient of 1-5.3121;\.55?,
1.75,2.031,1,0986,1.0986,1.0986,1.531,'.75,2.031),

and an objective function equal to 202.777.
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Using Gz, GB’ and G the following three indepen-

L
dent equations result:

1n x, = -1,52096
ln xz = -Io?s
1n x3 = =2.,071"

giving:
x, = 002]633

X, = 0.17377

The primal objective function is c£02.777 which agrees
with the dual and the constraints have the following
values respectively, 1.0, 0.52129, '.000026, therefore

the prodblem is solved.
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L4: Programming the “odified Convex Simplex '"ethod-

The next step in the analysis is to write a
computer program to solve geometric progrars using the
modified convex simplex (4). (The use of this progra=
is detailed in appendix B) “ost of this process
involves translating the steps in the reference (4§)
into computer code. All that need be addressed when
doing this is some bookeeping which need not be discuss-
ed here. However, certain steps in the program require
further explanation.

Le.1: The ISL (5) Library-

Two subroutines from the I''SL library (5) are used
to help with some repetitive steps. 'henever matrix
multiplication is required, the subroutine VYULFF is used.
This subroutine multiplies two matrices in full storage
mode giving a third full storage matrix as the result,
The subroutine LEQJT?F is used whenever it is necessary
to solve systems of linear equations. This is needed
when solving zero degree of difficulty problems, and
for calculating the primal variables from the dual,

4.2: Objective Function Optimization-

At each iteration it is necessary to determine the
optimal proportion of the direction vector for the move.
This is done by finding the point where the derivative
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of the objective function with respect to the direction
vector approaches zero. The function FMIN fro= Forsythe,
**alcolm, and Moler (6) is used to find this point. This
function finds the minimu=m of a unirodal function
between two points. In order to do this a function rmust
be defined describing the derivative at any given point
along the direction vector. This is done in function ¥
in the program. This merely defines the derivative
using the cquations described in the given description
of the algorithm,

4.3: Initialization-

A mojor modification of the convex‘simplex =ethod
involves the initial basic dual feasible solution as
described earlier. A routine must be provided in this
progran to determine an initial solution which has the
required properties. This is done by first using phase
I of the two phase siﬁplex method, as discussed earlier.
If it is possible to solve this problen so that all
artificial variables are nonbasic, the problerm is
considered canonical. If there is no feasible solution
to the constraint set, at least one of the artificial
variables will re=ain in the basis at optirmality. In
this case the appropriate message is printed and the

progran is terminated.
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Once the initial basis is defined it is necessary
to find a feasible positive vector for all dual variables.
This is done by first summing the values of each row
in the tabieau except for the basic columns, Then the
minimum of the current right hand side divided by one
plus the row sum is determined. One half of this value
i8 used as the starting value for all nonbasic dual
variables. The values of the basic variables are then
calculated by subtracting the product of the row sunm
times the nonbasic variables from the current right hand
side. This procedure insures that all dual variables
will be positive and that all basic variables will
be larger than the nonbasic variables,

Le4: Stopping Conditions-

The final decision to be made concerns the stopping
conditions for the algorithm. The program is checked
for optimality and feasibility if the maximum relative
cost and the minimum of the product of relative cost
times the dual variables equals zero or if the step
size along the direction vector at any iteration is
less than some predetermined value. This step size was
chosen to be 0,0001. To test for optimality the primal
variables are calculated and the values of the primal

objective function and constraints are determined. If
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the dual objective function differs fro~ the primal by
less than 0.,1% the proble= is considered optimal and
the solution is checked for feasibilty. If all of the
primal constraints are less than 1.,00001 the problem
is considered feasible and the final solution is print-
ed. When calculating the primal variables from the dual,
only those eqyuations corresponding to terms in active
primal constraints are meaningful. /n inactive primal
constraint would have all dual variables enual to zero.
Any dual variable less than 10'6 is considered to be
zero for this transformation.
4e5: 7ero Degrees of Difficulty-

As mentioned earlier, the subroutine LEQT2F (5)
is used whenever a zero degree of difficulty problenm
is encountered. A completely separate section of the
program is used to handle these problems. The linear
equations solved are the initial dual constraints,
which form a full rank set of equations if there are
zero degrees of difficulty. Then the primal variables
are calculated using the same routine as used in the

main progran.
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5: Conclusions-
5e¢1: Advantages of the Yodified Convex Simplex “Yethod-

The modified convex simplex algorithm (4) provides a
technique whereby high degree of difficulty posynomial
geometric programs can be solved. One advantage of using
this method is that it works out of the familiar Simplex
tableau. In fact, the linear simplex method can be
shown to be a special case of the convex simplex., “any
programs already exist for solving the regular simplex
method and the modified convex simplex only changes
these in the determination of the variables to change.
This makes it easier to progran this algorithm and
easier for operations researchers who already have
knowledge of the simplex method to understand it.

This method will work on any proble=m which can
be put into canonical form. Certain other solution
methods require that inactive primal constraints be
identified and eliminated from the problem or slack
variables added before it can be solved. The convex
simplex method makes no such requirements, although 1if
inactive constraints are eliminated the method will
converge more rapidly (2). However, the block decreases
in the algorithm are equivalent to eliminating inactive
primal constraints and therefore cause =ore rapid
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convergence of the proble=n.
5.2: Limitations of the fethod-

There are some limitations on this algorithm., The
first being that it can only be used to solve posynomial
problems. This just nmeans that any proble= must be
in the ror@ of a posynomial program before the algorith=
is invoked. Techniques have been proposed which could
transform signomial problems into posynomials (7). If
the user were to make this transformation the resulting
posynomial program could solved using this algorithm.

Another limitation is on degencrate proble=s, a
degenerate problem being one in which a priral tern
can approach zero without causing any other ter~ to
approach infinity (2). This could lead to basic variables
which are equal to zero and therefore non-convergence
due to cycling. The result of this degeneracy on the
dual is that it won't be possible to find an initial
positive dual feasible vector.

This algorithm will only work on canonical (non-
aegenerate) problems. It may be desirable to try to
identify degenerate problems initially so as not to
spend time trying to solve an insoluble problem. The
only sure way to identify degenerate problems is if a
primal variable has all exponents of the same sign.

=37-



Otherwise there are no hard and fast rules to define a
degenerate problem. In general a program with a much
greater nurnber of negative exponents is more likely
to be degenerate than one with a balanced nunmber of
s8igns or with more positive than negative exponents (2).
However, this is just a relative measure and the only
way to be sure that a problem is not canonical is to
attempt to solve {it.
5¢3: Computational Results-

Test problems were solved uging this algorithnm
with up to 16 degrees of difficulty. (These problems
are presented in appendix C) The results ére sumnarized

as follows:

Problen Primal Systen Number of
Number DOD Yariables Seconds Tterations
1 0 4 3.5 -

l 1 3 4.0 4
3 6 3 4.9 4
4A 10 ? 6.8 45
4B 10 ? 4.9 154
4C 10 ? 20.0 254
5 16 4 7.7 68

In general, it is observed that solution time
increases as degrees of difficulty and primal variables
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increase. However, times may vary greatly oeven for
problgma with the same number of variables and degrees
of difficulty. Problenms ;A, B, and C were taken fro=m

a paper of geometric programming test proble=s (9).
They differ only in the value of one exponent in the
objective function, yet there are dramatic differences
in solution time . and number of iterations. This illus-
trates some of the difficulty in predicting the time
needed to solve a problem just by observing properties
of the problen.

Some general statements about the algorithm were
made by Beck and Ecker. They found that "when the
coefficients in the primal problem differ by many
orders of magnitude, an extremely precise dual solution
is necessary,'" (4) and therefore a longer solution time
is required. Of course '"many orders of magnitude' and
"extrermely precise'" are subjective descriptions which
don't lead to precise classification of problens,
However, everything else being equal, a problem with
coefficients which differ to a larger degree than
another problem will probably take iore time to solve.

"A final observation is that the rore nonlinear the
primal program, the easier it is to solve the dual

program." (2) Nonlinear is also a subjective tern, but
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it basically refers to the number of exponents which are
not equal to one or zero .for each primal variable in
each ternm.

In sum—ary, although there are some basic rules
which can be applied to try to predict the solution tire
for a given problem, there is a great variation among
problems conforming to these rules. The only sure way
to know how difficult a problem is to solve is to go

ahead and attempt to solve it.



6: Areas of Future Study-
6.1: Generalized Geometric Programming-

A method has been proposed by Avriel, Dembo, and
Passy (7) to transform signomial problems into posyno-

mials, although the transformed problems still have the

problem of local optimum. This method should be studied

as to the possibility of using it to generalize the
. modified convex simplex method to allow solution of
signomial problems.

The authors also present a technique to solve
generalized geometric programs via a cutting plane
algorithm. Some c0mputati§nal results were included
which suggest that this technique could be used to
solve very large (high degree of difficulty) problems
with a relatively short computer times. These results
indicate that further examination of this algorithm
would be warrented.

6.?7: Augnmented Geometric Programming:

Another algorithm worth further study was proposed
by YcNamara (8). This procedure involves formation of
an augrented problem with zero degrees of difficulty.
“hen the augmented program is formed slack variables
with unknown exponents are added to the problem. The

algorithm involves solving a series of zero degree of
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V difficulty problems in oraer to estimate the optimal
exponents. Computational experience with this technijue
suggests that it may be efficient for solving high degree
of difficulty problems,
6.3: Surrogated Geometric Programning-

One final algorithm worth mentioning is presented
in Beightler and Phillips (2). Specifically it is the
Surrogated Geometric Progra=mming algorithm., This

algorith= also involves solving a series of zero degree

of difficulty problrms. In this case the primal constraint

set 18 replaced by a surrogate constraint which is a
linear combination of the constraints. In this constraint
surrogate multipliers which must sum to one are
introduced and the algorithm consists of finding a
feasible set of these multipliers. Basically a series
of zero degree of difficulty problems are 8solved in
order to move from superoptimality to feasibility by
varying the surrogate nultipliers. The only problem

with this technique is that the speed by which it
converges depends upon the initial choice for the
multipliers and there is no set method of choosing the=.

6.4: Other Areas of Study-

There are many other algorithms which can be used
to solve posynorial geometric programs, however most
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of these are variations of those already mentioned. A
comparative study of theqe algorithms would be valuable
in order to find one standardized solution method. #ith
the realization of the value of geometric programaing,
the value of finding the most efficient technique for
solving these problems would be significant,

Further study into the best method for solving
signomial geometric programs would also be valuable.
For years people have been faced with the problem of
solving generalized nonlinear optimization probdblems.
Many of these problems are in the geometric programming
problem form or could be transformed easily into this
form. Even functions which don't seem readily transformed
could be approximated by a power series expansion
with the accuracy desired determining how many ter=s
to include. A generalized geometric progra=mming
algorithm would be a powerful technique for solution
of these problems. Further study into developing such
a technique could make it possible to solve some
problems which previously had been almost i=npossible

to solve,
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Theoretical Basis for Geometric Programming (1)
Geometric Programming is based on the relationship

between the geometric and arithmetic means. The arithme-

tic mean of n numbers (or functions) U1 being:
n
A =§; (U,/n)
i= i

and the geometric mean is defined by:

n
G = |ul/"
i=1

The relationship between these values i8 known

as the geometric inequality and is represented as:
AZg )

as long as Ui is any non-negative ternm.

This inequality is easily shown to be true by
the following operation on an obviously true relationship
(for n=2;:

l

Uf - .?IJ‘U2 + Ug Z0
o] + 20,0, + U3 = 4U,u,
2l v v, ¢ 208 = v,
The square root of this last inequality gives inequality

(1), for n=2. For n=4 the inequality becomes:
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4,22
Ir Uy= Uj= U“ this can bé rewritten as:
3, (3/4)
10, +(3/u)u, = UV,
Therefore the relationship holds even for weighted
means as long as the weights sum to one.

The Dual-

If a generalized posynomial with terms:
a
2

a a
il TR K J
Ui = Cit' t tm

ie im

is to be minimized, the geometric inequality can be

stated as:

d1 d? dn
d U + d2U2+ oo e * dnUn _>_ U‘ Ua e Un

171

where d, are arbitrary positive weights which sum to

i

one. If we let u, = U,d

1 1940 the inequality becomes:

d d

d
Up + Uy 4 eee bu 2 (u‘/di) I(ua/da) ?...(un/dn) n

1

This right hand side is termed the pre-dual function
Ve If the original terms with variable tJ and coeffi-

are substituted into V it becomes:

d d d D, D
V(d,t)=(c,/d)) '(ep/dy) Saenle /d) Pt)liiie B (@)

cyents ci

where the exponents Dj are:

DJ =£ diaij ’ j-.-.l,...,m

_where ay3 is the exponent of tJ in the 1P

tern,
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If the 'eighga, di’ are chosen so that all D, ejual

J

zero, V(d,t) no longer depends upon t, and becomes

J
the Dual function v(d):

dl d? dn
V(d) =(C1/d‘) (C?/dP) ooo(cn/dn) (3)

It can be shown that the values of di which make the
vanish also give the upper bound on v(d). The form
of the geometric inequality makes it obvious that if
an upper bound on v is found, it must also be a lower
bound on the left hand side. Therefore to =minimize the
original function (the left hand side) it is only

necessary to find the point whefe the D, ejual zero,

J
which is defined by the following equations:

Z:,di ]

DJ = 0 ’ J="o.o,m (5)

Fquation (4) above norralizes the weights to 1 and is

§
-—

(&)

known as the normality condition. The equations
represented by (5) are termed the orthogonality condi-
tion.

The use of these conditions to solve posynomial
problems can best be illustrated using an example,

Suppbse we have the following problem:

Minimize 40 + uot2t3



subject to:

t.t + t.t
122 ‘~L 2 < 1

Substituting u, for each term in the functions this

i
problem becomes:

Min 8, = Uy * U,

+ 0, =1

S/T g, = u 4

3
Because there is a constraint, a more general
form must be used where all of the weights are no
longer normalized. If we use w, for the unnormalized
weights and k as their sum, the relationship between

the normalized and unnormalized weights is:

w, = kd y 1=1,2,5,4

i i
Substituting wi/k for di in the geometric inequality

gives:
w,/k vn/k
Up U L.l ¢ uh = (u‘/wl) "'(“n/'n) k

Taking both sides to the kth power gives:

w .
(% eee +u ) = (up/w) Neai(u /o) B kK

4

Using this inequality on the problem in question we

get:
k w w, k
0 = 1 2 o
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.
= g, = (u5/'5

Yultiplying the first inequality by both sides of

w w k
3 4 1
) (u“/'h) k,

the second gives:

Ko

o

k
1

v, v, s v ko "
g, = (u,/',) (uy/w,) (u5/v) (“q/'u) k=~ k

3

If we s8till normalize ko to 1! the predual function is:

v, '“ k‘
8 (t) = (uy/w)) “eeelu,/w) 7 ky

The dual function from this predual 1is:

w w w w k

(c,/my) (ep/wy) 2leg/ms) St /w) k!
k +w w, w

since k,' = k,°> * = k,”k,"*, this becomes:

Yo

'1 '} '“
(cy/wy) (ey/wy) “(egk /wy) “(c k\/w, )

with the normality and orthogonality conditions of:

w, +w, = 1
-v, + '3 + 'h = 0
W, o+, s W, = 0
-w, W, ¢ '3 = 0
which gives the solution: ,
v, = ?/3 v, = 1/3 v, = 1/3 v, = 1/3

Therefore the final solution can be had from the

geometric inequality as:
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273 o\V/3(2,N/3(2,N73
(t).=/(40 0 2 2/
WO ) ) @ - e

Therefore the minimum possible feasible value for &,
is 60 and the rpoblem has been 8olved.

If the values of ti are desired, it 18 necessary
to go back to the meaning of the dptinal weights.,
Fach weight represents the contribution of the corresp-
onding term to the equation which it is in. Therefore,
for the problen just solved the following equalities

define the primal variables:

0
E_%_f- = (2/3)(60) = v, 8,
17273
40t2t3 = (1/3)(60) = w58,
t't3
5t
- = (1/3)/(2/3) = 'u/k‘

which can be solved to give:

t] = 2 t, =1 t} = 0e5e
(The information in this appendix comes from Duffin,
Peterson, and Zener (1). For more details, please refer

to this reference)
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Appendix B

Using the Progran
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Before the program can be used the problem must
be in the proper forn. This progran requires that the
problem first must be in canonical form. This =~eans
that the objective function =~ust be a minimization
and all constraints must be less than or equal to one,
o strict ejuality constraints are allowed nor can
any coefficient in the problem be negative. The program
has been dimensioned so that no more than 19 primal
variables are allowed. Also, only 19 constraints and
20 terms per constraint can be used. Finally no more
than 59 total terms can be in the primal préblem.

The program has been designed to run in the batch
mode. The user must provide four types of data cards
which describe the problem to be solved. The progran
will then either conclude that the problem is not
‘canonical (degenerate) or it will find the optimal
solution and print the values of the optimal dual
and primal variables and objective functions.

The data cards needed are as follows:

I) Problem Description-

0 1
2 5
NVAR NCNSTR : |

FORMAT (I5,5X,15)

where: KVAR = number of primal variasbles (integer)
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NCNSTR = number of primal constraints (integer)

I1) Number of terms-
FORVAT (2014)

On this card the number of terms in the primal
objective function and constraints must be listed
in order in the format described above.

II1) Coefficients-

FORMAT (5E16.10)

Each card has tpo coefficients of one primal
constraint or the objective function. These cards all
adhere to the above format. If there are more than five
terms for any given equation just use as many cards as
necessary until all the coefficients are listed. For
example, if one constraint had twelve terms, then
three cards would be needed with only two values on
the third card.

IV) Exponents-

These cards follow the same format as for the
coefficients, however each card will have the exponents
of all variables for a 5i§en term. An exponent must
be included for every primal variable for every term,
If a primal variable is not present in a given term,
an exponent of zero must be placed in the proper

position,
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Once all thé data cards are typed they must be
put in the proper order..First must be the problen
description card followed by the nu=mber of terms card.
Next the coefficient card for the objective function is
input followed by the exponent cards for all terms in
the objective function. Finally, the coefficient cards
for the primal constraints are input followed by the
corresponding exponent cards,

An example of how to use the program follows,

The data for the following proble~ is given on
the following page:

Minimize x-‘

Subject to:
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The output from the program for this problem would

be:
EQUATION TED’ DUAI, VARIABLE VALUE
0 1 1.00000
1 | « 70735
2 .°8238
) 3 «6390?
? - 1 « 00000
2 2 « 00000
° 3 +« 00000
3 1 «?9765
3 2 71762
3 3 « 36098
DUAL OBJECTIVE FUNCTION VALUE = 202.77702
PRI''AL VARIABLES
NUYBER VALUE
1 21627
? « 17381
3 «13119
PRIMAL OBJECTIVE FUNCTION VALUE = 202,77702"
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Appendix C

Test Problems
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Problem Number One (2)-

xO.B x‘ clf

Minimize 3 y -

Subject to:
-2 _~1 -1

Xy x3 + x2x3 =1
x':xz;l + x;‘x;' =1
Solution:
x, = 0.05556 X, = 108.00
x3 = 432.00 xh = 0.06481

Objective function = 2.7844

Problem Number Two (2)-

lx;.e sle2y-lel 0.7x)*>

Minimize O0O.3x 2 3 2

. o.sx;"sx

Subject to:

0.8)(‘)(3 =1

l.2x‘x? < 1

Solution:
X, = 1,223 X, = 1.468
x3 = 0086‘

Objective function = 0.9189
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Problem Number Three (2)-

-1 -1 =1

Yinirize x1 x2 13 ,
Subject to: )
?x‘ v X, 4 jxs =1 }
x',l + x2 + x3 <=1
X, ¢+ 5x2 + 2x3
Solutidn:
X, = 0.”1633 X, = 0.1738
x3 = 0.13]18

Objective Function = 202,777

Problem Number Four A, B, C (9)-

vinimize 10.0x,x ;]xixgsx; + 15,ox;'x5?x5xux;‘x;i
+ ZO.Ox;zx?x;]xg?xG + 25.0xfxgx;'xg xg?x7
Subject to:

O. Sx% 3‘ 6px? + O.?x?x?ngx6x% + O. an 3% hi 2/3 *" 1
l.}x;ixzxg x; xg + O. 8x3 hlx51 2 + 3.lxl'xi ;? g' é/3<=l
2.0x, *§3/2*5 xg. "31/3 + 0.1x; "3} X5 "3"‘3*

+ 1 Ox >l X x% Xg * 0. 65x? X3 Xg 61 X, = !
0.2x7%x, x ‘x% x3/3 0.3x% xy %1357 $
v 0.1x77x7%x, x, x4 O.SXSZxQ xg =
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Problpm A: a=-=0.”5 B: a=0.125 C: a=0.50

Solution:

Variable A B c

Obj. Func. 1809.7615 311.87957 543.66638
X, 2.8566276  3.8955214 4.3919085
X5 0.61083°57 0.8086847 0.8546317
Xy 2.150394  2.6626285  2.8416793
X, L.7171337  4.2983005 3.4013674
Xg 1.0002048 0.85357785  0.7227534
Xg 1.3487370 1.0953123 0.8705°969
X, 0.03160686 0.02730898 0.02464651

Problem Nunber Five (2)-

Minimize 20X +10x,+30%5+15x, + 1500x;‘x'

Subject to :

le‘ + Sx?

+
\n
b
v
+
>
&
1A
[ep)
(@

2x] + 6xP + 8x3 +

Qx‘ + }x2 +

Xt %

Solution:

264

X =

: 2.68

1,22

1]

x3 = 1.33 X

Objective Function = 267.98
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