10,038 research outputs found

    Solving the Canonical Representation and Star System Problems for Proper Circular-Arc Graphs in Log-Space

    Get PDF
    We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where `canonical' means that models of isomorphic graphs are equal. This implies that the recognition and the isomorphism problems for this class of graphs are solvable in logspace. For a broader class of concave-round graphs, that still possess (not necessarily proper) circular-arc models, we show that those can also be constructed canonically in logspace. As a building block for these results, we show how to compute canonical models of circular-arc hypergraphs in logspace, which are also known as matrices with the circular-ones property. Finally, we consider the search version of the Star System Problem that consists in reconstructing a graph from its closed neighborhood hypergraph. We solve it in logspace for the classes of proper circular-arc, concave-round, and co-convex graphs.Comment: 19 pages, 3 figures, major revisio

    Gathering Anonymous, Oblivious Robots on a Grid

    Full text link
    We consider a swarm of nn autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robots is the following: The robots do not have a common compass, only have a constant viewing radius, are autonomous and indistinguishable, can move at most a constant distance in each step, cannot communicate, are oblivious and do not have flags or states. The only gathering algorithm under this robot model, with known runtime bounds, needs O(n2)\mathcal{O}(n^2) rounds and works in the Euclidean plane. The underlying time model for the algorithm is the fully synchronous FSYNC\mathcal{FSYNC} model. On the other side, in the case of the 2-dimensional grid, the only known gathering algorithms for the same time and a similar local model additionally require a constant memory, states and "flags" to communicate these states to neighbors in viewing range. They gather in time O(n)\mathcal{O}(n). In this paper we contribute the (to the best of our knowledge) first gathering algorithm on the grid that works under the same simple local model as the above mentioned Euclidean plane strategy, i.e., without memory (oblivious), "flags" and states. We prove its correctness and an O(n2)\mathcal{O}(n^2) time bound in the fully synchronous FSYNC\mathcal{FSYNC} time model. This time bound matches the time bound of the best known algorithm for the Euclidean plane mentioned above. We say gathering is done if all robots are located within a 2Ă—22\times 2 square, because in FSYNC\mathcal{FSYNC} such configurations cannot be solved

    Volumetric Spanners: an Efficient Exploration Basis for Learning

    Full text link
    Numerous machine learning problems require an exploration basis - a mechanism to explore the action space. We define a novel geometric notion of exploration basis with low variance, called volumetric spanners, and give efficient algorithms to construct such a basis. We show how efficient volumetric spanners give rise to the first efficient and optimal regret algorithm for bandit linear optimization over general convex sets. Previously such results were known only for specific convex sets, or under special conditions such as the existence of an efficient self-concordant barrier for the underlying set

    Reciprocity-driven Sparse Network Formation

    Full text link
    A resource exchange network is considered, where exchanges among nodes are based on reciprocity. Peers receive from the network an amount of resources commensurate with their contribution. We assume the network is fully connected, and impose sparsity constraints on peer interactions. Finding the sparsest exchanges that achieve a desired level of reciprocity is in general NP-hard. To capture near-optimal allocations, we introduce variants of the Eisenberg-Gale convex program with sparsity penalties. We derive decentralized algorithms, whereby peers approximately compute the sparsest allocations, by reweighted l1 minimization. The algorithms implement new proportional-response dynamics, with nonlinear pricing. The trade-off between sparsity and reciprocity and the properties of graphs induced by sparse exchanges are examined.Comment: 19 page

    Prescribing Gauss curvature of surfaces in 3-dimensional spacetimes, Application to the Minkowski problem in the Minkowski space

    Full text link
    We study the existence of surfaces with constant or prescribed Gauss curvature in certain Lorentzian spacetimes. We prove in particular that every (non-elementary) 3-dimensional maximal globally hyperbolic spatially compact spacetime with constant non-negative curvature is foliated by compact spacelike surfaces with constant Gauss curvature. In the constant negative curvature case, such a foliation exists outside the convex core. The existence of these foliations, together with a theorem of C. Gerhardt, yield several corollaries. For example, they allow to solve the Minkowski problem in the 3-dimensional Minkowski space for datas that are invariant under the action of a co-compact Fuchsian group
    • …
    corecore