44,257 research outputs found

    Discretization of Linear Problems in Banach Spaces: Residual Minimization, Nonlinear Petrov-Galerkin, and Monotone Mixed Methods

    Full text link
    This work presents a comprehensive discretization theory for abstract linear operator equations in Banach spaces. The fundamental starting point of the theory is the idea of residual minimization in dual norms, and its inexact version using discrete dual norms. It is shown that this development, in the case of strictly-convex reflexive Banach spaces with strictly-convex dual, gives rise to a class of nonlinear Petrov-Galerkin methods and, equivalently, abstract mixed methods with monotone nonlinearity. Crucial in the formulation of these methods is the (nonlinear) bijective duality map. Under the Fortin condition, we prove discrete stability of the abstract inexact method, and subsequently carry out a complete error analysis. As part of our analysis, we prove new bounds for best-approximation projectors, which involve constants depending on the geometry of the underlying Banach space. The theory generalizes and extends the classical Petrov-Galerkin method as well as existing residual-minimization approaches, such as the discontinuous Petrov-Galerkin method.Comment: 43 pages, 2 figure

    On the complexity of nonlinear mixed-integer optimization

    Full text link
    This is a survey on the computational complexity of nonlinear mixed-integer optimization. It highlights a selection of important topics, ranging from incomputability results that arise from number theory and logic, to recently obtained fully polynomial time approximation schemes in fixed dimension, and to strongly polynomial-time algorithms for special cases.Comment: 26 pages, 5 figures; to appear in: Mixed-Integer Nonlinear Optimization, IMA Volumes, Springer-Verla

    Convex inner approximations of nonconvex semialgebraic sets applied to fixed-order controller design

    Full text link
    We describe an elementary algorithm to build convex inner approximations of nonconvex sets. Both input and output sets are basic semialgebraic sets given as lists of defining multivariate polynomials. Even though no optimality guarantees can be given (e.g. in terms of volume maximization for bounded sets), the algorithm is designed to preserve convex boundaries as much as possible, while removing regions with concave boundaries. In particular, the algorithm leaves invariant a given convex set. The algorithm is based on Gloptipoly 3, a public-domain Matlab package solving nonconvex polynomial optimization problems with the help of convex semidefinite programming (optimization over linear matrix inequalities, or LMIs). We illustrate how the algorithm can be used to design fixed-order controllers for linear systems, following a polynomial approach
    • …
    corecore