194 research outputs found

    A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

    Get PDF
    This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method

    Green Scheduling of Control Systems

    Get PDF
    Electricity usage under peak load conditions can cause issues such as reduced power quality and power outages. For this reason, commercial electricity customers are often subject to demand-based pricing, which charges very high prices for peak electricity demand. Consequently, reducing peaks in electricity demand is desirable for both economic and reliability reasons. In this thesis, we investigate the peak demand reduction problem from the perspective of safe scheduling of control systems under resource constraint. To this end, we propose Green Scheduling as an approach to schedule multiple interacting control systems within a constrained peak demand envelope while ensuring that safety and operational conditions are facilitated. The peak demand envelope is formulated as a constraint on the number of binary control inputs that can be activated simultaneously. Using two different approaches, we establish a range of sufficient and necessary schedulability conditions for various classes of affine dynamical systems. The schedulability analysis methods are shown to be scalable for large-scale systems consisting of up to 1000 subsystems. We then develop several scheduling algorithms for the Green Scheduling problem. First, we develop a periodic scheduling synthesis method, which is simple and scalable in computation but does not take into account the influence of disturbances. We then improve the method to be robust to small disturbances while preserving the simplicity and scalability of periodic scheduling. However the improved algorithm usually result in fast switching of the control inputs. Therefore, event-triggered and self-triggered techniques are used to alleviate this issue. Next, using a feedback control approach based on attracting sets and robust control Lyapunov functions, we develop event-triggered and self-triggered scheduling algorithms that can handle large disturbances affecting the system. These algorithms can also exploit prediction of the disturbances to improve their performance. Finally, a scheduling method for discrete-time systems is developed based on backward reachability analysis. The effectiveness of the proposed approach is demonstrated by an application to scheduling of radiant heating and cooling systems in buildings. Green Scheduling is able to significantly reduce the peak electricity demand and the total electricity consumption of the radiant systems, while maintaining thermal comfort for occupants

    Optimization-based Framework for Stability and Robustness of Bipedal Walking Robots

    Get PDF
    As robots become more sophisticated and move out of the laboratory, they need to be able to reliably traverse difficult and rugged environments. Legged robots -- as inspired by nature -- are most suitable for navigating through terrain too rough or irregular for wheels. However, control design and stability analysis is inherently difficult since their dynamics are highly nonlinear, hybrid (mixing continuous dynamics with discrete impact events), and the target motion is a limit cycle (or more complex trajectory), rather than an equilibrium. For such walkers, stability and robustness analysis of even stable walking on flat ground is difficult. This thesis proposes new theoretical methods to analyse the stability and robustness of periodic walking motions. The methods are implemented as a series of pointwise linear matrix inequalities (LMI), enabling the use of convex optimization tools such as sum-of-squares programming in verifying the stability and robustness of the walker. To ensure computational tractability of the resulting optimization program, construction of a novel reduced coordinate system is proposed and implemented. To validate theoretic and algorithmic developments in this thesis, a custom-built “Compass gait” walking robot is used to demonstrate the efficacy of the proposed methods. The hardware setup, system identification and walking controller are discussed. Using the proposed analysis tools, the stability property of the hardware walker was successfully verified, which corroborated with the computational results
    corecore