92 research outputs found

    Asymmetric hyperbolic L-spaces, Heegaard genus, and Dehn filling

    Full text link
    An L-space is a rational homology 3-sphere with minimal Heegaard Floer homology. We give the first examples of hyperbolic L-spaces with no symmetries. In particular, unlike all previously known L-spaces, these manifolds are not double branched covers of links in S^3. We prove the existence of infinitely many such examples (in several distinct families) using a mix of hyperbolic geometry, Floer theory, and verified computer calculations. Of independent interest is our technique for using interval arithmetic to certify symmetry groups and non-existence of isometries of cusped hyperbolic 3-manifolds. In the process, we give examples of 1-cusped hyperbolic 3-manifolds of Heegaard genus 3 with two distinct lens space fillings. These are the first examples where multiple Dehn fillings drop the Heegaard genus by more than one, which answers a question of Gordon.Comment: 19 pages, 2 figures. v2: minor changes to intro. v3: accepted version, to appear in Math. Res. Letter

    A duplicate pair in the SnapPea census

    Full text link
    We identify a duplicate pair in the well-known Callahan-Hildebrand-Weeks census of cusped finite-volume hyperbolic 3-manifolds. Specifically, the six-tetrahedron non-orientable manifolds x101 and x103 are homeomorphic.Comment: 5 pages, 3 figures; v2: minor edits. To appear in Experimental Mathematic

    Asymmetric hyperbolic L-spaces, Heegaard genus, and Dehn filling

    Get PDF
    Mathematic

    Euclidean decompositions of hyperbolic manifolds and their duals

    Get PDF
    Epstein and Penner constructed in [EP88] the Euclidean decomposition of a non-compact hyperbolic n-manifold of finite volume for a choice of cusps, n >= 2. The manifold is cut along geodesic hyperplanes into hyperbolic ideal convex polyhedra. The intersection of the cusps with the Euclidean decomposition determined by them turns out to be rather simple as stated in Theorem 2.2. A dual decomposition resulting from the expansion of the cusps was already mentioned in [EP88]. These two dual hyperbolic decompositions of the manifold induce two dual decompositions in the Euclidean structure of the cusp sections. This observation leads in Theorems 5.1 and 5.2 to easily computable, necessary conditions for an arbitrary ideal polyhedral decomposition of the manifold to be a Euclidean decomposition
    • …
    corecore