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Abstract

Epstein and Penner constructed in [EP88] the Euclidean decomposi-
tion of a non-compact hyperbolic n-manifold of finite volume for a choice
of cusps, n ≥ 2. The manifold is cut along geodesic hyperplanes into
hyperbolic ideal convex polyhedra. The intersection of the cusps with
the Euclidean decomposition determined by them turns out to be rather
simple as stated in Theorem 2.2. A dual decomposition resulting from
the expansion of the cusps was already mentioned in [EP88]. These two
dual hyperbolic decompositions of the manifold induce two dual decom-
positions in the Euclidean structure of the cusp sections. This observation
leads in Theorems 5.1 and 5.2 to easily computable, necessary conditions
for an arbitrary ideal polyhedral decomposition of the manifold to be a
Euclidean decomposition.

1 Introduction and notation

1.1 Minkowski space Hn

A good reference for the following is [Rat94].
The symmetric bilinear form ◦ of type (n, 1) turns Rn+1 into Minkowski

(or Lorentzian) space with norm (x ◦ x)
1
2 . The vectors with norm equal to zero

are called light-like. If the norm is positive (resp. imaginary), the vector is called
space-like (resp. time-like). If a light-like or a time-like vector has a positive
last coordinate, the vector is called positive. The positive light-like vectors form
the positive light cone L+. Its convex hull L+ consists of the positive light-like
and the positive time-like vectors.

The vectors of imaginary norm i form a two-sheeted hyperboloid, and the
sheet with the positive time-like vectors forms the Minkowski model Hn of
hyperbolic space. The distance d(x, y) of any two points x and y of Hn is
defined by cosh d(x, y) = −x ◦ y. The isometries of Hn are exactly those maps
that are induced by linear maps of Rn+1 that preserve the bilinear form and
that do not exchange Hn with the other sheet of the hyperboloid. These linear
maps are called positive Minkowski transformations.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Hochschulschriftenserver - Universität Frankfurt am Main

https://core.ac.uk/display/14500863?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A vector subspace V of Rn+1 is called time-like if and only if V has a time-
like vector, space-like if and only if every non-zero vector in V is space-like, or
light-like otherwise. A plane in Hn of dimension m is the intersection of Hn

with a time-like vector subspace of Rn+1 of dimension (m+1). The Minkowski-
orthogonal complement of a vector subspace A is denoted by AL. A and AL

do not span Rn+1 in general. We embed the projective model Dn in L+ as the
set {(x1, . . . , xn, 1)|x2

1 + · · · + x2
n < 1}. Radial projection induces an isometry

between Dn and Hn.

1.2 Convex hull construction

We consider a non-compact hyperbolic manifold Dn/Γ of finite volume, where Γ
is a freely acting, discrete subgroup of the isometries of Dn. For a decomposition
of Dn/Γ into a compact part and finitely many cusps, denote by S the preimage
of the cusps in Dn. S consists of pairwise disjoint Γ-invariant horoballs. A
horoball b of S is mapped by radial projection to a horoball of Hn. The horoballs
in Hn are the sets {x ∈ Hn|x ◦ v ≥ −1} for v ∈ L+, and so b determines a
unique point of L+, called its representative. The set of representatives of
horoballs of S will be denoted by B. The Euclidean closed convex hull of B will
be denoted by C. Radial projection maps ∂C to the Euclidean decomposition
of Dn corresponding to S. Each subpolyhedron of this decomposition is the
hyperbolic convex hull of finitely many base points of horoballs of S. The
decomposition of Dn is Γ-invariant, so it induces a decomposition of Dn/Γ.
Because polyhedra in Dn look like Euclidean polyhedra, these decompositions
are called Euclidean.

For a three-dimensional link space, the cusps are solid tori from which the
cores have been removed. There are many possibilities to choose such topological
neighbourhoods of the removed link components. But the definition of a cusp
restricts these possibilities because the preimage of a cusp has to be a horoball.
So there is only a one-parameter choice for each of the cusps that corresponds
to parallel cuts producing different volumes of the cusp. It turns out that the
Euclidean decompositions agree for two choices of cusps if there is a common
factor α so that the volume of each cusp of the second choice is α times the
volume of the corresponding cusp of the first choice. If the volumes of all the
cusps are chosen to be equal, the decomposition is uniquely determined by the
hyperbolic manifold, and it is called canonical. If the manifold has only one
cusp, every Euclidean decomposition is canonical.

The decomposition is described by the isometry classes of the ideal polyhedra
and the gluing isometries between their (n− 1)-dimensional sides. Theorem 1.1
ensures that only finitely many polyhedra occur. If n ≥ 3, a gluing isometry is
determined by the combinatorial pairing of vertices. The case n = 2 is special
because an isometry that leaves a line invariant is not necessarily the reflection
in this line or the identity. Further, if n ≥ 3, an ideal n-polyhedron is determined
up to isometry by its combinatorial structure, i. e. by which vertices each of
the sides is spanned, and by the angles between sides. This last result follows
from Th. 14.1 of [Riv94] where it is proved for the essential case n = 3.
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Theorem 1.1 The operation of Γ on the Euclidean decomposition of Dn is free
and it has only finitely many orbits.

Proof: We denote by π the covering Dn → Dn/Γ. Removing the open cusps of
Dn/Γ, we obtain a compact set K. As the distance of any two points of Dn/Γ
is the minimal distance between their preimages in Dn, we can find a compact
set U ⊂ Dn such that K ⊂ π(U).

Every polyhedron of the Euclidean decomposition of Dn has at least two
ideal vertices, and so it cannot lie completely in S. So each polyhedron of the
decomposition intersects ΓU . The decomposition is locally finite (Proposition
3.5 of [EP88]), U is compact, and this implies the finiteness of the orbits.

Assume that γ ∈ Γ leaves an ideal polyhedron σ invariant. A power of γ
induces then the identity on the vertices of this polyhedron. Because Γ contains
only fixed point free isometries, σ has to be a geodesic line. This implies that γ
is a hyperbolic isometry that fixes both of the ideal points of σ. But the ideal
points of the Euclidean decomposition are fixed points of parabolic isometries
of Γ. Because parabolic and hyperbolic isometries cannot share a common fixed
point in a discrete group, the assumed existence of γ leads us to a contradiction.
♣

Remark: Theorem 1.1 fills a small gap of [EP88]. The result on the finiteness of
the orbits is obvious in dimension n = 2 because the area of each ideal polygon is
a multiple of π, and the finiteness of the area of the surface implies the finiteness
of the orbits. But the situation changes for n ≥ 3 because in those dimensions
there exist ideal polyhedra with arbitrarily small volumes.

1.3 Isometries of the manifold

The group of isometries of Dn/Γ is equal to N(Γ)/Γ, where N(Γ) is the nor-
malizer of Γ in the group of isometries of Dn. An isometry γ of Dn/Γ maps a
cusp to another cusp. If all cusps are chosen to have the same volume, i. e. the
decomposition is canonical, the cusps are permuted by γ. The lifting γ̃ of γ to
Dn permutes then the preimages of the cusps, the set S of horoballs. So the
set B of light-like representatives of S is permuted, too. Therefore, the closed
convex hull C of B is kept invariant by (the isometry of Hn corresponding to)
γ̃, so γ̃ and γ preserve the canonical decomposition.

In particular, γ induces a combinatorial automorphism of the ideal polyhedra
of the canonical decomposition. On the other hand side, if the dimension of the
manifold is greater than two, any combinatorial automorphism is by Mostow’s
rigidity theorem homotopic to an isometry while leaving fixed the ideal points
during the homotopy. So every combinatorial automorphism is indeed an isome-
try. This fact was used by Weeks’ computer program SnapPea [Wee] to compute
combinatorially the group of isometries of the manifold. If the manifold is a knot
space, this is the symmetry group of the knot, too.
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2 How cusps intersect the Euclidean decompo-
sition

Lemma 2.1 z + L+ is a subset of C for each z ∈ B.

Proof: We set 〈x〉+ = {αx|α ≥ 0} for x ∈ Rn+1. It is easy to see that the
closed convex hull of a+ 〈b〉+ and c contains c+ 〈b〉+ for any a, b and c of Rn+1.

Let v and z be elements of B. By Lemma 3.3 of [EP88], the half-line v+〈v〉+
is contained in C. As z ∈ C, and C is closed and convex, we have z+ 〈v〉+ ⊂ C.
The rays through points of B are dense in L+. It follows z + L+ ⊂ C because
C is closed and further z + L+ ⊂ C because C is convex. ♣

Definition: An ideal polyhedron that is spanned by a subset of the ideal ver-
tices of a polyhedron of the Euclidean decomposition ofDn is called a generalized
subpolyhedron of the Euclidean decomposition.

Theorem 2.2 A horoball h of S intersects a generalized subpolyhedron σ of the
Euclidean decomposition of Dn determined by S if and only if the base point of
h is an ideal vertex of σ.

Proof: A horoball based at an ideal vertex of σ clearly intersects σ.
We consider in the following the case that the base point of h is not an

ideal vertex of the generalized subpolyhedron σ. Denote by z0 the element of B
corresponding to h. Then σ corresponds via radial projection to the Euclidean
convex hull σ′ of a finite subset of B − {z0}. Further, σ′ lies in ∂C.

We denote for v ∈ L+

W (v) = {x ∈ Rn+1|x ◦ v = −1},
W+(v) = {x ∈ Rn+1|x ◦ v ≥ −1},
W−(v) = {x ∈ Rn+1|x ◦ v < −1}.

The minimal distance between two disjoint horoballs being represented in
L+ by u and v is ln(−(u◦ v)/2) (see e.g. Lemma 4.2.c in [Wee93]). This implies
−(z ◦ z0)/2 > 1, and so z ∈ W−(z0/2) for z ∈ B − {z0}. As a half-space is
convex, we have σ′ ⊂W−(z0/2).

The horoball h is the projection of W+(z0) ∩Hn to Dn by definition of z0.
Denote by 〈x〉 the ray from the origin through a point x of h. Let

x1 = 〈x〉 ∩Hn, x2 = 〈x〉 ∩ ∂C, x3 = 〈x〉 ∩W (z0/2).

There exists α > 0 so that x3 = αx1. It follows by x3 ◦ (z0/2) = −1 and
x1◦z0 ≥ −1 that α ≥ 2. This implies x3◦x3 ≤ −4 and so (x3−z0)◦(x3−z0) ≤ 0.
Because (x3 − z0) ◦ x3 < 0, the last coordinate of (x3 − z0) is positive, and
therefore (x3 − z0) ∈ L+. By Lemma 2.1 we have x3 ∈ C. Therefore, the point
x2 must lie on the segment from the origin to x3, and so x2 ∈ W+(z0/2). We
showed above that σ′ ⊂ W−(z0/2). Therefore x2 6∈ σ′. This means that x 6∈ σ,
and we have thus proved that h and σ are disjoint. ♣
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Remark: Sometimes it is useful to admit tangential points between the cusps.
It is a consequence of Theorem 2.2 that in this case a horoball h of S intersects
a generalized subpolyhedron not having the base point of h as an ideal vertex
at most in a point of its bounding horosphere ∂h.

One can deduce easily from Theorem 2.2 the well-known result that for a
cusped hyperbolic surface of finite area and any choice of cusps, the area of the
cusps is at most 3/π times the area of the whole surface. One has only to verify
that three disjoint (or at most tangential) horoballs cover at most the area 3 of
the ideal triangle spanned by their base points.

3 Voronoi domains

We start with a description of the supporting planes for C that results from the
first part of the proof of Proposition 3.5 in [EP88].

Lemma 3.1 For a supporting plane T for C there exists either z ∈ B so that

T = 〈z〉L and C ⊂ {x ∈ Rn+1|x ◦ z ≤ 0},

or there exists w ∈ Hn and c < 0 so that

T = {x ∈ Rn+1|x ◦ w = c} and C ⊂ {x ∈ Rn+1|x ◦ w ≤ c}.

Further, the mapping of a supporting plane to its normal vector is a bijection
between the supporting planes for C and the elements of B and Hn.

The distance of a point x to a horoball h is the signed hyperbolic distance
from x to the bounding horosphere ∂h. The sign is defined to be negative if
x ∈ h, otherwise positive.

Definition: The Voronoi domain of the horoball h ∈ S is the set of points of
Hn that are at most as far away from h as from any other horoball of S.

We shall now start to prove that Voronoi domains are polyhedra and that
they form a locally finite covering of Hn. The Voronoi domains are Γ-invariant
because S is Γ-invariant and Γ contains only isometries. So a decomposition
of the hyperbolic manifold is induced. This Voronoi decomposition turns out
to be dual to the Euclidean decomposition if both of the decompositions are
constructed using the same choice of cusps.

The following Lemma is proved in [SW95b] as Lemma 3.2. It implies the
following two Corollaries.

Lemma 3.2 The distance of a point x ∈ Hn to a horoball that is represented
by w ∈ L+ is ln(−x ◦ w).

Corollary 3.3 Given two horoballs h1 and h2 that are represented by u1 resp.
u2. The set of points that are at most as far away from h1 as from h2 is the
half-space

{x ∈ Rn+1|x ◦ (u2 − u1) ≤ 0} ∩Hn.
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The set of points that are equidistant from h1 and h2 is the hyperplane

{x ∈ Rn+1|x ◦ (u2 − u1) = 0} ∩Hn.

♣

Corollary 3.4 Let h0 be a horoball of S that is represented by z0 in B. Then
the Voronoi domain of h0 is

V (z0) =
⋂

z∈B−{z0}
{x ∈ Hn|x ◦ (z − z0) ≤ 0}.

♣

Lemma 3.5 Let z0 be a point of B. Let w be a point of Hn and denote by
T (w) the supporting plane at C determined by Lemma 3.1 that has w as a
normal vector. Then the point w lies in V (z0) if and only if T (w) contains
z0. Further, there exists a neighbourhood Uε(w) of w in Hn such that Uε(w)
intersects no other Voronoi domains but those which belong to horoballs that are
represented by elements of T (w) ∩B.

Proof: By Lemma 3.2, the point w of Hn lies in V (z0) if and only if there exists
a q < 0 such that w ◦ z0 = q and w ◦ z < q for any z ∈ B − {z0}. This means
that B is a subset of the Euclidean half-space R = {x ∈ Rn+1|w ◦ x ≤ q}, and
z0 lies in the hyperplane ∂R = {x ∈ Rn+1|w ◦ x = q}. This is equivalent to the
statement that C is a subset of R and z0 lies in ∂R. As a supporting plane at
C with normal vector w is unique, w lies in V (z0) if and only if z0 lies in T (w).

The intersection of T (w) with B is a finite set, {z1, . . . , zs}. By the above
calculation we have for some q < 0

w ◦ z = q for z ∈ {z1, . . . , zs},
w ◦ z < q for z ∈ B − {z1, . . . , zs}.

As the intersection of a space-like hyperplane with L+ is compact and B is
discrete, we can slightly translate T (w) along its normal vector without touching
new points of B. So there exists an ε0 > 0 such that

w ◦ z ≤ q − ε0 for z ∈ B − {z1, . . . , zs}.

Setting ε = (ln(ε0 − q) − ln(−q))/2, we get by use of the triangle inequality a
neighbourhood Uε(x) that is disjoint to the Voronoi domains corresponding to
elements of B − {z1, . . . , zs}. ♣

Corollary 3.6 The Voronoi domains V (z), z ∈ B, form a locally finite covering
of Hn.

Proof: Let w be a point of Hn and denote by T (w) the supporting plane
assigned by Lemma 3.1. T (w) ∩ B is a finite, non empty subset of B. By
Lemma 3.5, the set Uε(w) intersects only finitely many Voronoi domains but at
least one Voronoi domain. ♣
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Lemma 3.7 For z0 ∈ B, the interior of the Voronoi domain V (z0) is

◦
V (z0) =

⋂

z∈B−{z0}
{x ∈ Hn|x ◦ (z − z0) < 0}.

Proof: Denote
⋂
z∈B−{z0}{x ∈ Hn|x ◦ (z − z0) < 0} by M . By Corollary 3.3,

this is the set of points that lie in V (z0) but not in any other Voronoi domain
V (z), z ∈ B − {z0}. Lemma 3.5 ensures a neighbourhood Uε(w) in Hn that is
contained in M . So the points of M are interior points of V (z0).

For a point x of V (z0) − M there exists a z distinct from z0 such that
x ◦ (z− z0) = 0. The point x cannot be an interior point of V (z0) because even
in {x ∈ Hn|x ◦ (z − z0) ≤ 0} the point x has no neighbourhood that is open in
Hn. So M is the interior of V (z0). ♣

Lemma 3.8 Denote by V the Voronoi domain in Dn for a horoball h. Then
the closure V of V as a subset of the Euclidean space Rn intersects ∂Dn only
in the base point of h.

Proof: Denote by p the light-like representative of h in B. Radial projection
to Dn maps p to the base point of h, say P . Let us suppose the existence of
a point Q in V ∩ ∂Dn different from P . Because V is closed and convex, the
line g joining P and Q lies in V . Choose any vector q in L+ that maps to Q by
radial projection.

We turn now to the Minkowski model Hn. The intersection of the vector
subspace < p, q > with Hn, a line g′, is mapped by radial projection to g.
Denote by rw the distance of a point w ∈ g′ to h. As shown in the proof of the
first part of Lemma 3.5, the Euclidean hyperplane

Hw = {y ∈ Rn+1|w ◦ y = −erw}

is a supporting plane for C at the point p for any w ∈ g′. As w moves along
g′ to infinity, we obtain for each direction of movement a light-like supporting
plane for C at the point p. One of the two is < p >L, the other is parallel to
< q >L. But < p >L is by Lemma 3.1 the only supporting plane for C at p. So
the assumed existence of a point Q ∈ V ∩ ∂Dn different from P leads us to a
contradiction. ♣

Lemma 3.9 A Voronoi domain is an n-dimensional convex polyhedron. Its
sides are compact.

Proof: Denote by V the Voronoi domain corresponding to a horoball h that
is represented by z0 ∈ B. Let x be a point of the boundary of V . Corollary
3.4 and Lemma 3.7 imply that x lies in at least one Voronoi domain distinct
from V . By Corollary 3.6 there is a neighbourhood U(x) and a finite subset
{z0, z1, . . . , zg} of B, representing horoballs h0, . . . , hg , g ≥ 1, such that for any
point y of U(x)

d(y, hi) < d(y, hj) for i = 0, 1, . . . , g and j ≥ g + 1.
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It follows

U(x) ∩ V = U(x) ∩
g⋂

i=1

{x ∈ Hn|x ◦ (zi − z0) ≤ 0}.

We have thus shown that the set of half-spaces {x ∈ Hn|x◦(zi−z0) ≤ 0} (whose
intersection is V ) is locally finite at the boundary of V . So V is a polyhedron.
Its dimension is n because it contains the horoball h.

The sides of a polyhedron are closed. We have to show now that they are
bounded. Let us suppose the existence of an unbounded side τ of V . In the
projective model Dn, the closure of τ as a subset of Rn touches ∂Dn. By Lemma
3.8 this has to be the base point P of the horoball h. Now choose a point Q
of τ . The half-line r connecting Q and the ideal point P lies in τ by convexity
and closedness of τ . But r clearly intersects h which is in the interior of V . We
thus derive the contradiction that a side of V intersects the interior of V . So
the assumption about the unboundedness of τ is false. ♣

Remark: We showed that certain subsets of all the hyperplanes 〈zi − zj〉L for
zi, zj ∈ B are locally finite near the boundary of V . But the complete set of
those hyperplanes is never locally finite in the whole of Hn. This can be seen
in the upper half-space model Un as follows.

First, we consider the case n ≥ 3. The Euclidean (n− 1)-manifold at a cusp
section is compact, and it is therefore finitely covered by a Euclidean (n − 1)-
torus. Especially, the stabilizer of any parabolic fixed point in Γ contains the
Poincaré extensions of two Euclidean translations with different translation axes.
Choose a parabolic fixed point and denote two of the independent translations
of its stabilizer in Γ by γ and δ. Bring this parabolic fixed point in the upper
half-space model Un to ∞ and choose any other parabolic fixed point x ∈ ∂Un.
The points γiδj(x), i and j integers, constitute a lattice that is contained in a
Euclidean two-dimensional plane E ⊂ ∂Un.

Now restrict attention to the hyperbolic 3-space F lying vertically above E.
The intersection of F with the horoballs of S based at the lattice points in E is
a set of horoballs of equal Euclidean radii. Choose two of these horoballs, say h
and h′. Denote by g the mid perpendicular to their base points in E. The set of
points in F that are equidistant from h and h′ is the hyperbolic plane that lies
vertically above g. Denote by gi the mid perpendicular to the points γ−iδ−1(x)
and γiδ(x). These lines are not locally finite, indeed they converge to the mid
perpendicular to the points γ−1(x) and γ(x). So, the planes Fi lying vertically
above gi are not locally finite, too. The set of all the considered hyperplanes
contains all the Fi’s and it is not locally finite, too.

The two-dimensional case is handled similarly. Again, we construct a not
locally finite subset of the hyperplanes 〈zi−zj〉L for zi, zj ∈ B. As in the above,
we position in U2 a horodisk of S with its base point at ∞. The stabilizer of
∞ in Γ is generated by the Poincaré extension τ of a Euclidean translation of
∂U2. Let h be any horodisk with a base point, say P , on ∂U 2. The points that
are equidistant from h and τ(h) form a line that joins the Euclidean mid point
of P and τ(P ) with ∞.

8



Now let h0 be a horodisk of S. The base points of horodisks are dense in
∂U2 ∪ {∞}. Therefore, a sequence hi of horodisks exists whose base points
converge to the base point of h0. The lines that are equidistant from hi and
τ(hi), i = 1, 2, . . ., are not locally finite. This had to be shown.

Definition: A k-dimensional polyhedron σ spans a k-dimensional subspace
which we denote by 〈σ〉. Two polyhedra σ1 and σ2 are said to be quasi-
orthogonal if 〈σ1〉 and 〈σ2〉 intersect orthogonally in exactly one point. If σ2 is
a point, quasi-orthogonality means just that σ2 is an element of 〈σ1〉.

Definition: Let σ be a subpolyhedron of the Euclidean decomposition of Dn

with respect to Γ. The ideal vertices of σ correspond to elements z1, . . . , zm
of B. The dual polyhedron σ∗ is the intersection of the Voronoi domains
V (z1), . . . , V (zm).

Theorem 3.10 Let η and σ be subpolyhedra of a Euclidean decomposition of
Hn with respect to Γ.

• η ⊂ σ if and only if σ∗ ⊂ η∗.

• If the dimension of σ is k, 1 ≤ k ≤ n, then σ∗ is a compact polyhedron of
dimension (n− k).

• The polyhedra σ and σ∗ are quasi-orthogonal.

• For γ in Γ we have (γ(σ))∗ = γ(σ∗).

• If the decomposition is canonical, then for γ ∈ N(Γ), the normalizer of Γ
as a subgroup of the isometries of Un, we have (γ(σ))∗ = γ(σ∗).

Proof: The vertices of σ correspond to elements of B which may be numbered
as z1, . . . , zm, representing horoballs h1, . . . , hm, m ≥ 2.

To verify the first claim, we suppose η ⊂ σ. The vertices of η correspond
to, say, z1, . . . , zj with j ≤ m. A point that is equidistant from the horoballs
h1, . . . , hm is equidistant from h1, . . . , hj . So η ⊂ σ implies σ∗ ⊂ η∗.

Now assume σ∗ ⊂ η∗. Because σ corresponds by radial projection to a side
of C, there exists a supporting plane at C that intersects B only in z1, . . . , zm.
So, by Lemma 3.5, σ∗ contains a point that is equidistant from h1, . . . , hm
and farther away from any other horoball of S. But x is equidistant from the
horoballs corresponding to the vertices of η, too, and farther away or equidistant
from any other horoball of S. So the vertices of η have to be a subset of the
vertices of σ, and therefore η ⊂ σ.

Now we prove the second claim. σ∗ is closed because it is the intersection
of Voronoi domains that are, as we know, closed. Voronoi domains V1 and V2

belong to the horoballs h1 and h2 based at the vertices of σ. Because σ ⊂ V1∩V2,
σ∗ lies in a side of V1. We know that sides of Voronoi domains are compact, so
σ∗ is compact, too.
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We compute the dimension of σ∗. The set of points that are equidistant
from the horoballs h1, . . . , hm is the plane

T =

m⋂

i=2

〈zi − z1〉L ∩Hn

= 〈z2 − z1, . . . , zm − z1〉L ∩Hn.

We remark that 〈z2−z1, . . . , zm−z1〉 is a proper subspace of 〈z1, . . . , zm〉 because
the first space is space-like, while the second one is time-like.

Dim T = Dim(〈z2 − z1, . . . , zm − z1〉L)− 1

= (n+ 1−Dim〈z2 − z1, . . . , zm − z1〉)− 1

= n−Dim〈z2 − z1, . . . , zm − z1〉
= n− (Dim〈z1, . . . , zm〉 − 1)

= n−Dim〈σ〉.

We showed in the above proof of the first claim that a point x exists in σ∗ that
is equidistant from h1, . . . , hm and farther away from any other horoball of S.
Lemma 3.5 ensures even a neighbourhood of x with this property. Therefore,
σ∗ has a non empty interior in T . So the dimension of σ∗ is the dimension of T .

We shall prove now the third claim. Remember that m ≥ 2. The subspace
〈z1, . . . , zm〉 is time-like, its dimension will be denoted by r. By the above proof
of the second claim, we know that σ∗ spans in Hn the plane

P1 = 〈z2 − z1, . . . , zm − z1〉L ∩Hn.

Because σ spans P2 = 〈z1, . . . , zm〉 ∩ Hn, we have to prove that P1 and P2

intersect orthogonally in one point.
By linear algebra one can show that there exists a positive Minkowski trans-

formation A that maps 〈z1, . . . , zm〉 to U1 = 〈e1, . . . , er−1, en+1〉, and it maps
〈z2 − z1, . . . , zm − z1〉 to 〈e1, . . . , er−1〉. Because A preserves orthogonal com-
plements, 〈z2 − z1, . . . , zm − z1〉L is mapped by A to U2 = 〈er, . . . , en+1〉. The
planes U1 ∩Hn and U2 ∩Hn intersect orthogonally in the point en+1. Because
A induces an isometry in Hn, P1 and P2 intersect orthogonally in one point, so
σ and σ∗ are quasi-orthogonal.

The fourth and the fifth claim follow immediately by the operations of the
corresponding groups on the Euclidean (or canonical) decomposition and by the
definition of Voronoi domains. ♣

Theorem 3.11 The operation of Γ on the dual polyhedra has only finitely many
orbits. The operation of Γ on the dual polyhedra of dimension smaller than n
is free.

Proof: This follows immediately from Theorem 1.1 and Theorem 3.10. Re-
member that the ideal points of the polyhedra are not part of the Euclidean
decomposition, so the dual polyhedra of dimension n, i. e. the Voronoi domains,
have to be excluded. ♣

10



Figure 1: Neighbourhoods in a special spine.

4 Spines

A horoball collapses to its bounding horosphere by contracting each ray that
starts at the base point of the horoball to its intersection with the horosphere.
This is the nearest point retraction. We extend the rays based at the base
points of the horoballs of S until they intersect the boundaries of the Voronoi
domains. By contracting these rays, Dn collapses to the (n− 1)-skeleton of the
Voronoi decomposition of Dn. By the way, note that this is not the nearest point
retraction. The fourth statement of Theorem 3.10 ensures that the collapsing
is Γ-invariant. So the (n − 1)-skeleton of the Voronoi decomposition is a spine
of the hyperbolic manifold. By duality, this is a standard spine if and only if
all the polyhedra of the Euclidean decomposition are simplices. For n = 3, the
neighbourhoods in a special spine look like in figure 1.

5 Induced decompositions of the cusp sections

5.1 Duality in the cusp sections

We consider only cusp sections that are the boundaries of the chosen cusps. So,
the preimage of a cusp section under the covering Hn → Hn/Γ is a horosphere
that bounds a horoball of S. It is convenient to place this horosphere, say h, in
the upper half-space model Un with the base point at ∞. By this, h becomes a
Euclidean hyperplane parallel to ∂Un. In the following we fix a certain choice
of cusps, and we consider the resulting Euclidean decomposition. We denote by
Z∞ all the polyhedra of the Euclidean decomposition with one vertex equal to
∞. The intersection of a polyhedron τ of Z∞ with h is a compact polyhedron
in the Euclidean structure of h because, by Theorem 2.2, h is disjoint to the
side of τ opposite to∞. If the dimension of τ is k, the dimension of the induced
polyhedron in h is (k− 1). Z∞ induces a decomposition on h which we call ZE .
It is invariant under Γ∞, the stabilizer of ∞ in Γ.

By Lemma 3.8, the boundary of the Voronoi domain V of the horoball
bounded by h is homeomorphic to h. Every line having the base point of h as
an ideal vertex intersects both of ∂V and h in exactly one point. This bijection
is in Un the vertical projection along the n-th axis. A compact hyperbolic
polyhedron of ∂V is mapped to a compact Euclidean polyhedron on h of the

11



same dimension. So we get a decomposition on h which we call ZV . By the
fourth statement of Theorem 3.10, it is invariant under Γ∞.

ZE and ZV induce decompositions of the cusp sections.

Definition: Let η be a polyhedron of ZE of dimension k, 0 ≤ k ≤ n − 1. It
is the intersection of h with an ideal polyhedron η0 of dimension (k + 1) of the
Euclidean decomposition. The projection of the dual polyhedron η∗0 to h is (by
the above) an (n − k − 1)-dimensional polyhedron of ZV denoted by η∗. It is
called the dual polyhedron of η in ZV .

This duality is a bijection between the polyhedra of ZE and of ZV . We describe
now explicitly this duality structure.

Theorem 5.1 Let η and σ be subpolyhedra of ZE for a specified cusp section.

• η ⊂ σ if and only if σ∗ ⊂ η∗.

• If the dimension of σ is k, the dimension of σ∗ is (n− k − 1).

• The polyhedra σ and σ∗ are quasi-orthogonal.

• For γ ∈ Γ∞ we have (γ(σ))∗ = γ(σ∗).

• If the decomposition is canonical, then for γ ∈ N(Γ)∞, the stabilizer of
∞ in the normalizer of Γ as a subgroup of the isometries of Un, we have
(γ(σ))∗ = γ(σ∗).

Proof: Only the third claim does not follow immediately by Theorem 3.10
and the above considerations. We prove the quasi-orthogonality of σ and σ∗.
Compare with figure 2.

Denote the dimension of σ by k, 0 ≤ k ≤ n − 1. Quasi-orthogonality is
preserved by isometries, so we may assume that σ lies in a horosphere h that
has ∞ as its base point. Let σ0 be the polyhedron of Z∞ whose intersection
with h is σ.

The projection of σ∗0 to h is σ∗. σ∗0 spans an (n− k − 1)-dimensional plane
〈σ∗0〉 in Un, and this is a Euclidean hemisphere which is orthogonal to ∂Un. By
Theorem 3.10, 〈σ0〉 and 〈σ∗0〉 intersect orthogonally in one point, say x. Denote
by T the (n−k−1)-dimensional Euclidean tangency plane for 〈σ∗0〉 at the point
x. T and 〈σ0〉 intersect orthogonally in the Euclidean and in the hyperbolic
structure of Un because Un is a conformal model.

The projection of T to h is the Euclidean plane that is spanned by σ∗. And
the intersection of 〈σ0〉 with h is the Euclidean plane that is spanned by σ.
These two planes intersect orthogonally in one point which is the projection of
x to h. So σ and σ∗ are quasi-orthogonal in the Euclidean structure of h. ♣

12
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〈σ∗0〉

∂U3

σ∗

σ

T

x

Figure 2: Dual decompositions on a horosphere.
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5.2 Isometric dual polyhedra

Let M = U3/Γ be a manifold with exactly one cusp, and suppose that its
Euclidean decomposition consists of ideal tetrahedra. Because there is only one
cusp, the operation of Γ on the parabolic fixed points is transitive. So the Γ-
orbit of each tetrahedron of the Euclidean decomposition of U 3 determines by
its intersection with the horosphere h based at ∞ four Γ∞-orbits of Euclidean
triangles in ZE. Because opposite angles in an ideal tetrahedron are equal, these
triangles are similar.

A Γ-orbit of an edge of the Euclidean decomposition of U 3 contributes to
ZE two Γ∞-orbits of points. We shall prove in the following Theorem that the
dual polyhedra to these two points are isometric in the Euclidean structure of h.
But, in general, this isometry does not lie in the normalizer of Γ∞ as a subset
of the Euclidean isometries of h. So, in general, this isometry will not induce
an isometry in the Euclidean structure of h/Γ∞, i. e. in the cusp section.

Theorem 5.2 Let M = Un/Γ be a hyperbolic n-manifold of finite volume and
exactly one cusp, n ≥ 2. Let σ be a k-dimensional ideal polyhedron of the
canonical decomposition of Un determined by Γ. Let h be any horosphere that is
the preimage of the boundary of the chosen cusp. As described above, every ideal
vertex of σ determines on h a Γ∞-orbit of (k− 1)-dimensional polyhedra of ZE.
Let σ1 and σ2 be such polyhedra corresponding to different vertices of σ. Then
there exists a Euclidean isometry f that maps σ∗1 to σ∗2 . If M is orientable, f
can be chosen to be orientation reversing.

Proof: Compare with figure 3. We bring the base point of h in Un to ∞. By
an isometry of Γ, σ is positioned so that σ∩h = σ1. There exists an ideal vertex
P of σ and an isometry γ of Γ so that σ2 = γ(σ) ∩ h. P is different from ∞
because σ1 and σ2 belong to different vertices of σ.

A horoball of S is based at P , and we denote its bounding horosphere by hP .
Denote by E the hyperbolic hyperplane consisting of points that are equidistant
from h and from hP . σ∗ lies in E. The reflection ι at E maps h to hP . So γι
leaves the horosphere h invariant. This implies that γι is the Poincaré extension
of a Euclidean isometry of ∂Un. This means that there exists a Euclidean
isometry f of ∂Un = Rn−1 so that γι(x, t) = (f(x), t), x ∈ Rn−1, t ∈ R.
Denote by p the orthogonal projection of Un to h. This projection commutes
with Poincaré extensions. For a point x of σ∗ we have

pγ(x) = pγι(x)

= γιp(x)

= fp(x).

By definition of the dual decomposition of the cusp, p(σ∗) is σ∗1 . Because
γ(σ∗) = (γ(σ))∗ (see Theorem 3.10), we have pγ(σ∗) = σ∗2 . So σ∗2 = f(σ∗1).

M is orientable if and only if every element γ of Γ is orientation preserving.
Because the reflection ι is orientation reversing, f is orientation reversing if and
only if γ is orientation preserving. Remark that there might exist an orientation

14



σ1
σ2

σ∗2σ∗1

P

hP

γ(h)

h

σ∗

γ(σ∗)

γ(σ)σ

Figure 3: Isometric dual polyhedra.

reversing Euclidean isometry that leaves σ∗1 invariant. So σ∗1 and σ∗2 might be
mapped onto each other by an orientation preserving isometry, too. ♣

Remark: Theorem 5.2 can be extended to manifolds with more than one cusp.
To do this, a Euclidean structure can be given to any horosphere h as follows.
Choose an isometry ζ so that ζ(h) is in Un a Euclidean hyperplane parallel to
∂Un of height 1. Then define the Euclidean distance of any two points of h as
the Euclidean distance of their image points. This is well defined because an
isometry of Un that fixes ζ(h) is the Poincaré extension of a Euclidean isometry
of ∂Un.

Assume that in the above proof the horospheres hP and h are not equivalent
under the operation of Γ. Denote by q1 the orthogonal projection of Un to hP ,
i. e. for x ∈ Un the point q1(x) is the intersection of hP with the line passing
through x and P . Correspondingly, denote by q2 the orthogonal projection to
h.

The reflection ι at E satisfies ιq1(x) = q2(x) for any x ∈ E. So, ι maps the
polyhedron q1(σ∗) of the dual decomposition of hP to the polyhedron q2(σ∗) by
an isometry of the Euclidean structures of the two horospheres.

Whether this isometry is orientation reversing of preserving depends on the
chosen orientations of the cusp sections.
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Figure 4: Two ideal regular tetrahedra.
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Figure 5: The cusp section is a torus.

α∗

α∗

β∗

γ∗ ε∗

ζ∗

Figure 6: Dual hexagon.

6 Applications

6.1 The figure eight knot

We shall apply the preceding results on the complement of the figure eight knot.
This space can be decomposed into two ideal regular tetrahedra. In figure 4,
the edges of the small triangles with the same label are to be glued together
(see e. g. [Rat94] or [Thu79]). Indeed, this is the canonical decomposition.
One can verify this by computing the tilts as described in [SW95b]. The cusp
of this manifold is homeomorphic to S1 × S1 × [1,∞). The induced Euclidean
decomposition ZE of the cusp section consists of Euclidean equilateral triangles
with identifications as in figure 5.

We position the horosphere h with the decomposition ZE in the upper half-
space model Un with the base point at ∞. The stabilizer Γ∞ of ∞ in Γ is
generated by two translations, say ξ1 and ξ2. To describe them, we set the
height of an equilateral triangle equal to 1. The length, say a, of the edges
is then 2/

√
3. We choose a Euclidean coordinate system in h with an x-axis

parallel to κ. With suitable orientations of the axes we have

ξ1 : (x, y)→
(
x− a

2
, y + 1

)
and ξ2 : (x, y)→ (x+ 4a, y).

We shall compute the dual decomposition of h. One can see easily that the
dual point to each one of the triangles is its centre, but we would like to know
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ι∗

λ∗µ∗
A B

Figure 7: Dual edges in the continuation of figure 5.

how far the Theorems 5.1 and 5.2 determine the dual decomposition of the cusp
section. We remark that if, as here, Γ∞ contains only translations, these two
Theorems determine the dual decomposition at most up to translation.

Let us denote by Z∗ any decomposition of h that assigns to every polyhedron
σ of ZE a polyhedron σ∗ of Z∗ satisfying the conditions one to four of Theorem
5.1. An example for Z∗ is ZV .

There are four Γ∞-orbits of vertices in ZE . The dual two-dimensional poly-
hedra have to be hexagons because six edges come together at every vertex of
ZE. By quasi-orthogonality, every interior angle has to be 120◦.

Consider in figure 7 the dual hexagon with sides α∗, γ∗, β∗, α∗, ζ∗, and ε∗

(where we denoted ξ−1
1 (α∗) by α∗, too). We shall denote a side and its length by

the same symbol. The two sides denoted by α∗ are orthogonal to the translation
direction of ξ1. So the hexagon has to have the shape of figure 6.

The translation length a of ξ1 is 2/
√

3. It follows that the sides γ∗, β∗, ζ∗

and ε∗ all have the same length a/(2 cos 30◦), i. e. 2/3. Considering the other
dual hexagons, we have

γ∗ = β∗ = ζ∗ = ε∗ = µ∗ = κ∗ = η∗ = θ∗ =
2

3
. (1)

The decomposition Z∗ has to be invariant with respect to ξ2, too. In figure
7, the point A has to be mapped to B by ξ2. This is satisfied if and only if A
and B have the same y-component and the distance of A and B is 4a, i. e.

d1 = d2 and (2)

(4a)2 = d2
1 + d2

2 − 2d1d2 cos 120◦, (3)

where
d1 = α∗ + δ∗ + λ∗ + ι∗ and d2 = ε∗ + µ∗ + η∗ + β∗.
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If (1) is satisfied, then (2) and (3) reduce to

α∗ + δ∗ + λ∗ + ι∗ =
8

3
. (4)

The decomposition ZV satisfies

α∗ = δ∗ = λ∗ = ι∗ =
2

3
.

So, besides ZV , there exist many dual decompositions satisfying the statements
one to four of Theorem 5.1. For example, we can shrink the edge ι∗ a little bit
in figure 7 so that A is mapped to B by ξ2.

Now, which constraints on Z∗ are imposed by Theorem 5.2? There are four
Γ-orbits of ideal triangles in the Euclidean decomposition of U 3 because the
eight sides are identified pairwise. Every triangle determines three Γ∞-orbits of
edges in the decomposition ZE of h. For example, the triangle with the ideal
vertices 1, 2 and 4 determines the edges α, κ and θ. Theorem 5.2 implies that
the lengths of the edges are related as follows

α∗ = κ∗ = θ∗

γ∗ = ζ∗ = λ∗

η∗ = δ∗ = β∗

ι∗ = µ∗ = ε∗.

Equation (1) implies that each of the dual edges has the length 2/3. So, in this
example, the Theorems 5.1 and 5.2 determine the dual decomposition of h up
to translation.

One can compute by hand the combinatorial automorphisms of the decom-
position in figure 4. It is a dihedral group of order 8 generated by two automor-
phisms which are described by the permutation of the ideal vertices:

τ1 =

(
1

2

2

4

3

1

4

3

)
, τ2 =

(
1′

3′
2′

4′
3′

4′
4′

2′

)
and ω1 =

(
1

1′
2

2′
3

3′
4

4′

)
, ω2 =

(
1′

1

2′

2

3′

3

4′

4

)
.

Let us see how far we get if we do not use the information that the ideal
tetrahedra are regular. In figure 4, the identification maps the 12 edges onto
two edges. The combinatorial automorphism determined by τ1 and τ2 permutes
these two edges. Each edge induces two points in the Euclidean decomposition
ZE of the cusp section torus. So there are two N(Γ)∞-orbits of points in ZE .
The fifth statement of Theorem 5.1 implies that there are only two isometry
classes of dual hexagons in ZV . Theorem 5.2 even implies that all the dual
hexagons are isometric. Though this does not imply immediately that the dual
hexagons are regular, this is quite a strong relation.

If the cusp section is a torus, any translation commutes with Γ∞, so there
exist uncountably many Euclidean isometries for the cusp section. Therefore,
the isometries of the manifold do not induce all the isometries of the cusp
sections. It is surprising that there exist isometries of the cusp sections that
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preserve both of the dual decompositions of the cusp sections but that are not
induced by isometries of the manifold. An example can be seen in figure 5. It
is the reflection in the line that is orthogonal to the edge λ and that passes
through the centre of λ.

6.2 Two-bridge links

Sakuma and Weeks described in [SW95a] a topological decomposition of the
complements of hyperbolic two-bridge links. The decomposition consists of
ideal tetrahedra. In section II.4 of their paper they considered the induced
combinatorial decomposition of the cusp sections. Then they calculated how the
tetrahedra have to be realized as hyperbolic ideal tetrahedra so that the gluing
produces a complete hyperbolic structure. In Theorem II.5.5, they obtained
an equation whose solutions with positive imaginary part produce a complete
hyperbolic structure. It is the conjecture of Sakuma and Weeks that one of
these solutions produces the canonical decomposition.

The Theorems 5.1 and 5.2 provide necessary conditions for the decomposi-
tion of the torus to be induced by the canonical decomposition. The combinato-
rial automorphisms of the decomposition have been computed by Sakuma and
Weeks, so the fifth statement of Theorem 5.1 can be applied immediately, too.

These additional constraints might be strong enough so that only one solu-
tion of the above mentioned equation satisfies them. For this candidate, one
could compute the tilts (according [SW95b]) and maybe verify that the decom-
position is the canonical one.

7 Degenerate ideal triangulations

It is a conjecture that every non-compact hyperbolic 3-manifold of finite volume
can be decomposed into hyperbolic ideal tetrahedra. A Euclidean decomposition
solves only part of this problem because it uses ideal polyhedra. Now decompose
each of the polyhedra arbitrarily into ideal tetrahedra without introducing new
vertices. This induces a decomposition of the two-dimensional sides into trian-
gles. In general, the identifications of the polyhedra’s two dimensional sides do
not respect this new decomposition. But the concept of ’flat’ ideal tetrahedra
will resolve this difficulty.

It helps, if we regard the gluing of polyhedra in a two-stage process. First,
we have finitely many combinatorial polyhedra with combinatorial gluing maps.
Then we realize the polyhedra as hyperbolic ideal polyhedra with gluing isome-
tries that are still determined by the combinatorial mapping of the ideal vertices.

We start with two pyramids, say C1 and C2, having a triangulation as in
figure 8. We want to glue the sides as indicated there for the vertices. This
is not compatible with the triangulation, but, for the moment, we do not care.
This situation can be easily realized in hyperbolic 3-space with ideal vertices.
By the gluing, we obtain an octahedron. In figure 9, we change the gluing a little
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Figure 8: Two pyramids.

Figure 9: An additional square.

bit by inserting an additional square between those sides of C1 and C2 that are
glued onto each other. The result is the same. But the description changed: We
start with two pyramids, C1 and C2, and a tetrahedron T . The combinatorial
gluing is as in figure 10. This gluing respects now the triangulation. Then we
choose realizations of C1 and C2 as before, but for T we choose a degenerate
realization as a square. This insertion of degenerate tetrahedra opens the way
to glue sides with different decompositions.

Let us call the exchange of the triangles in figure 11 a 2-process. To handle
the general case, one has to verify that any two triangulations of a k-gon can
be transformed into each other by finitely many 2-processes. This can be done
by induction.

The attempt to produce degenerate ideal triangulations in higher dimensions
fails in general. In any dimension it is possible to triangulate the polyhedra of
the Euclidean decomposition without introducing new vertices. But for n ≥ 4,
the induced decompositions on the (n − 2)-dimensional sides are non-trivial.
Because the insertion of flat n-simplices does not change the (n− 2)-skeleton of
the triangulation, different triangulations cannot be made equal.

Figure 10: Adding a tetrahedron.
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Figure 11: A 2-process.
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