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Abstract. An L-space is a rational homology 3-sphere with minimal Heegaard
Floer homology. We give the first examples of hyperbolic L-spaces with no sym-
metries. In particular, unlike all previously known L-spaces, these manifolds are
not double branched covers of links in S3. We prove the existence of infinitely
many such examples (in several distinct families) using a mix of hyperbolic ge-
ometry, Floer theory, and verified computer calculations. Of independent inter-
est is our technique for using interval arithmetic to certify symmetry groups and
non-existence of isometries of cusped hyperbolic 3-manifolds. In the process,
we give examples of 1-cusped hyperbolic 3-manifolds of Heegaard genus 3 with
two distinct lens space fillings. These are the first examples where multiple Dehn
fillings drop the Heegaard genus by more than one, which answers a question of
Gordon.

1 Introduction

1.1 Asymmetric L-spaces. For a rational homology 3-sphere M , the rank of its Hee-

gaard Floer homology ĤF(M) is always bounded below by the order of H1(M ;Z),
and M is called an L-space when this bound is an equality. Lens spaces and other
spherical manifolds are all L-spaces, but these are by no means the only examples.
In fact, recent work of Boyer, Gordon, and Watson [BGW] shows that each of the
eight 3-dimensional geometries has an L-space. Their work is part of broader efforts
to characterize L-spaces via properties not obviously connected to Heegaard Floer
theory; specifically, they conjecture that a rational homology sphere is an L-space if
and only if its fundamental group is not left-orderable. Although the conjecture has
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been resolved for seven of the geometries, it remains open for the important case of
hyperbolic geometry as well as for most manifolds with non-trivial JSJ decomposi-
tions.

All previous examples of hyperbolic L-spaces have come via the following spe-
cific type of surgery construction, and one of our main results demonstrates that
this is a construction of convenience rather than necessity. A strong inversion of a
cusped 3-manifold is an orientation preserving, order-two symmetry which acts on
each cusp by the elliptic involution; any closed manifold obtained by Dehn filling
inherits this symmetry. To date, all hyperbolic L-spaces have been constructed by
surgery on strongly invertible manifolds, and moreover, the quotient of the L-space
by the induced symmetry was always S3. Recall that a hyperbolic 3-manifold is
asymmetric if its only self-isometry is the identity map; by a deep theorem of Gabai,
this is equivalent to every self-diffeomorphism being isotopic to the identity [Gab].
We show the following:

1.2 Theorem. There exist infinitely many asymmetric hyperbolic L-spaces. In
particular, there are hyperbolic L-spaces which are neither regular covers nor reg-
ular branched covers of another 3-manifold.

Among L-spaces which are not double branched covers over links in S3, hyperbolic
examples such as those of Theorem 1.2 are the simplest possible in the sense that
any such L-space must have a hyperbolic piece in its prime/JSJ decomposition. This
is because any graph manifold which is a rational homology sphere, much less an L-
space, is a double branched cover over a link in S3. This was proved by Montesinos
in [Mon, §7.2]; the theorem stated there is paraphrased in the translation below:

1.3 Theorem [Mon, §7.2]. Let M be a graph manifold whose diagram is a tree
with each vertex corresponding to a Seifert fibered space over a (punctured) S2 or
(punctured) RP2. Then M is a double branched cover of a link L in S3.

Note the rational homology sphere assumption implies that the diagram of the graph
manifold is a tree. Also, the cases that arise if the tree is a just single vertex are cov-
ered in [Mon, §2-3].

We prove Theorem 1.2 via a combination of hyperbolic geometry, Heegaard Floer
theory, and verified computer calculations. The proof of Theorem 1.2 has two parts,
the second of which is computer-aided. The first result shows that we need only
construct 1-cusped manifolds with certain properties, and the second establishes
the existence of such manifolds. Here, the order of a lens space is the order of its
fundamental group/first homology.
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Figure 1.4. The link used in Theorem 4.4 is L12n1314 in the Hoste-Thistlewaite cen-
sus. Our framing conventions for Dehn filling are and are consistent with
SnapPy [CDW]. Note there is an orientation-preserving homeomorphism of S3 which
interchanges the two components.

2.1 Theorem. Suppose M is a 1-cusped hyperbolic 3-manifold. If M is asymmet-
ric and has two lens space Dehn fillings of coprime order, then there are infinitely
many Dehn fillings of M which are asymmetric hyperbolic L-spaces. Moreover,
M is the complement of a knot in an integral homology 3-sphere and fibers over
the circle with fiber a once-punctured surface.

4.4 Theorem. There exist infinitely many 1-cusped hyperbolic 3-manifolds
which are asymmetric and have two lens space fillings of coprime order. Specif-
ically, if N is the exterior of the link in Figure 1.4, then for all large k ∈ Z, the
(6k ±1,k) Dehn filling on either component of N yields such a manifold.

In addition to Theorem 4.4, Theorem 4.1 offers a finite number of explicit examples
for which the proof is slightly easier. A Heegaard diagram of the simplest of these
examples is given in Figure 4.3.

1.5 Heegaard genus, Dehn filling, and the Berge conjecture. Our second main re-
sult answers a question of Gordon [Gor] regarding the existence of manifolds where
multiple fillings drop the Heegaard genus by more than one:

1.6 Corollary. There exist infinitely many 1-cusped hyperbolic 3-manifolds of
Heegaard genus three which admit two distinct lens space fillings.

This corollary follows immediately from Theorem 4.4, as manifolds with genus two
Heegaard splittings always have symmetries; the examples of Theorem 4.4 must
have Heegaard genus exactly three since the link in Figure 1.4 is 3-bridge.
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The interest in L-spaces stems in part from open questions about lens space
surgery, with the Berge Conjecture as the chief example. Another interesting feature
of Corollary 1.6 is that it provides counterexamples to the following generalization
of the Berge Conjecture, since the exterior of any (1,1)–knot has Heegaard genus
two:

1.7 Conjecture [BDH, Conjecture 9]. If knots K1 ⊂ L(p1, q1) and K2 ⊂ L(p2, q2) are
longitudinal surgery duals, then up to reindexing, K2 is a (1,1)–knot and p2 ≥ p1.

We note that these examples do not contradict the Berge Conjecture itself because
they are not knot complements in S3; see the proof of Theorem 4.4 for details.

1.8 Certifying symmetry groups. The hard part of proving Theorems 4.1 and 4.4 is
determining the symmetry groups of 23 cusped hyperbolic 3-manifolds, in partic-
ular, showing that they are asymmetric. Following Weeks and collaborators [HW1,
Weeks1, HW2], we do this by using the Epstein-Penner canonical cellulation; the
symmetry group agrees with the combinatorial isomorphisms of this cellulation.
For each manifold, we give a rigorous computer-assisted proof that a certain trian-
gulation is the canonical cellulation. We build on the verified computation scheme
of [HIKMOT] for proving the existence of hyperbolic structures. This scheme re-
places floating-point computations subject to various kinds of errors with interval
arithmetic in order to meet the traditional standards of rigorous proof. Our method
for certifying a triangulation as canonical is described in detail in Section 3 and is
not specific to the examples here. In addition, the proofs of Theorems 4.1 and 4.4
employ SnapPy [CDW] to perform combinatorial computations. Both SnapPy and
the code for [HIKMOT] are freely available; the source code and data files used in
the computer-assisted proofs in this paper are permanently archived at [DHL].

As further context for Theorems 4.1 and 4.4, we note that in general it is quite
difficult to show a particular 3-manifold is asymmetric. Most proofs that specific
hyperbolic 3-manifolds are asymmetric hinge on computing a hyperbolic invari-
ant which is not preserved by any possible isometry; see for example the delicate
arguments in [Ril]. One notable exception is the case of complements to certain
arborescent knots [BS]; since knots are determined by their complements [GL], the
symmetry group of a knot complement is the same as that of the pair (S3,K ), where
additional tools apply. As the referee pointed out to us, the link L in Theorem 4.4
is Montesinos and the symmetry group of (S3,L) can be computed by [BZ]. While
this is less information than the symmetry group of the exterior of L, it is possible to
leverage this fact to a computer-free proof of Theorem 4.4 and hence Theorem 1.2
and Corollary 1.6; see Remark 4.7 for details. However, this alternative approach
does not extend to the specific examples in Theorem 4.1 of asymmetric 1-cusped
manifolds.
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2 Asymmetric L-spaces from cusped manifolds

This section is devoted to the proof of the following result:

2.1 Theorem. Suppose M is a 1-cusped hyperbolic 3-manifold. If M is asymmet-
ric and has two lens space Dehn fillings of coprime order, then there are infinitely
many Dehn fillings of M which are asymmetric hyperbolic L-spaces. Moreover,
M is the complement of a knot in an integral homology 3-sphere and fibers over
the circle with fiber a once-punctured surface.

This theorem follows immediately from the next two lemmas, where in the second
one we set N \∂N ∼= M .

2.2 Lemma. Suppose M is an asymmetric 1-cusped hyperbolic 3-manifold. Then
all but finitely many Dehn fillings of M are hyperbolic and asymmetric.

2.3 Lemma. Suppose N is a compact 3-manifold with ∂N a torus. If N has two
lens space Dehn fillings of coprime order, then N has infinitely many Dehn fillings
which are L-spaces. Moreover, N is the exterior of a knot in an integral homology
sphere and fibers over the circle with fiber a surface with one boundary compo-
nent.

The proofs of these two lemmas are completely independent and will be familiar
to experts in the areas of 3-dimensional hyperbolic geometry and Heegaard Floer
theory, respectively.

Proof of Lemma 2.2. Our argument here is motivated by [HW2], which contains ad-
ditional details. The key geometric claim is that, for all but finitely many slopes α,
the Dehn filled manifold Mα is hyperbolic with the core c of the added solid torus
being the unique shortest closed geodesic in Mα. Since c is the unique geodesic of
its length, any isometry of Mα must send c to itself, setwise if not pointwise. Any
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isometry of Mα thus induces a self-diffeomorphism of M . Any symmetry of Mα

would thus give one of the asymmetric manifold M , and so Mα must also be asym-
metric, as desired.

The geometric claim follows from the proof of the Hyperbolic Dehn Surgery
Theorem [Thu, Theorem 5.8.2] as we now explain. Thurston showed that all but
finitely many Dehn fillings on M give closed hyperbolic 3-manifolds whose geom-
etry is very close to that of M outside the core curves of the filling solid tori; for
further background see [Thu, §4.6-4.8]. Specifically, for any fixed ε> 0, after exclud-
ing finitely many slopesα, we can assume that Mα is hyperbolic with the core curve
c being a geodesic of length less than ε which lives inside a very deep tube whose
complement is (1+ ε)–bi-Lipschitz to a fixed compact subset of M . Taking ε much
smaller than the length of the shortest closed geodesic in M , it follows that c is the
unique shortest closed geodesic in Mα. This establishes the geometric claim and
hence the lemma.

Proof of Lemma 2.3. We first show that N is the exterior of a knot in an integral ho-
mology sphere. Let α and β be the given slopes where Nα and Nβ are lens spaces.
Since H1(Nα;Z) = H1(N ;Z)

/〈α〉 and H1(Nβ;Z) = H1(N ;Z)
/〈β〉 are cyclic of coprime

order, it follows that H1(N ;Z)
/〈α,β〉 is trivial and hence that H1(∂N ;Z) → H1(N ;Z)

is surjective; combining this with “half-lives, half-dies” for H1(∂N ;Fp ) → H1(N ;Fp )
for every prime p, it follows that H1(N ;Z) ∼= Z. Let µ ∈ H1(∂N ;Z) be any primitive
element whose image generates H1(N ;Z). Then Nµ is an integral homology sphere
as desired.

A knot K in a lens space L is primitive if [K ] generates H1(L;Z). Since H1(∂N ;Z)
surjects onto H1(N ;Z), it follows that N is the exterior of primitive knots in Nα and
Nβ; Theorem 6.5 of [BBCW] then implies that N fibers over the circle. An easy con-
sequence of the surjectivity of H1(∂N ;Z) → H1(N ;Z) is that the fiber has only one
boundary component.

It remains to show that N has infinitely many L-space fillings, which is a stan-
dard consequence of the exact triangle in Heegaard Floer homology, specifically:

2.4 Proposition [OS, Prop 2.1]. Suppose {η,ν} are a basis for H1(∂N ;Z) and Nη,
Nν, and Nη+ν are all rational homology spheres with∣∣H1(Nη+ν;Z)

∣∣= ∣∣H1(Nη;Z)
∣∣+ ∣∣H1(Nν;Z)

∣∣. (2.5)

If Nη and Nν are L-spaces, so is Nη+µ.

As elements of H1(∂N ;Z), orientα and β so that the cone C = {
aα+bβ

∣∣ a,b ∈Z>0
}

is disjoint from the kernel of H1(∂N ;Z) → H1(N ;Z). It is enough to show that every
primitive lattice point in C corresponds to an L-space filling. Notice first that the
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homological picture of (N ,∂N ) developed above means that the map C →N which
sends γ→ ∣∣H1(Nγ;Z)

∣∣ is the restriction of a linear function. In particular, condition
(2.5) will always hold on C . By the Cyclic Surgery Theorem [CGLS], the geometric
intersection number α ·β is 1, and hence we may apply Proposition 2.4 to see that
Nα+β is an L-space. Repeating this argument inductively with the basis

〈
nα+β, α

〉
yields an infinite collection of L-space fillings on N , proving the lemma. One can
extend this to all primitive vectors in C with a little more thought, and a complete
answer to which Nη are L-spaces is given in [Ras].

3 Certifying canonical triangulations

Triangulations are a basic tool in 3-manifold topology, especially its algorithmic
and computational aspects, and the use of ideal triangulations to study hyperbolic
structures on 3-manifolds goes back to Thurston [Thu]. Although every manifold
has infinitely many triangulations, a cusped hyperbolic 3-manifold M has a unique
canonical ideal cellulation which is defined solely in terms of its geometry. Generi-
cally —including in all the examples here— this cellulation is an ideal triangulation,
called the canonical triangulation.

Introduced by Epstein and Penner [EP], the canonical cellulation is defined by
first embedding the universal cover H3 of M into (3+ 1)-dimensional Minkowski
space. Choose disjoint horotorus neighborhoods of each cusp in M which all have
the same volume. Upstairs in H3, these neighborhoods lift to a π1(M)–invariant
packing of horoballs. In the Minkowski model, each horoball B has a corresponding
lightcone vector vB , where B = {

w ∈H3
∣∣ vB ·w ≤−1

}
. The convex hull of the light-

cone vectors associated to the set of cusps has a natural cellulation of its boundary,
and projecting this radially defines a cellulation of H3. Since this cellulation is pre-
served both by the action of π1(M) and also by the lifts of isometries of M , it de-
scends to a cellulation of M which is preserved by its isometry group; in particular,
we get the following key tool:

3.1 Corollary [HW1]. The elements of the isometry group of M correspond pre-
cisely to the combinatorial isomorphisms of its canonical cellulation. In partic-
ular, if the canonical cellulation has no nontrivial combinatorial isomorphisms,
then M is asymmetric.

From now on, let T denote an ideal triangulation of M where each topolog-
ical tetrahedron has been assigned a shape: an isometry type of an ideal tetra-
hedron with geodesic sides in H3. Each shape is specified by a complex number,
and these numbers must satisfy certain polynomial conditions which ensure that
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these geometric tetrahedra glue up to give the complete hyperbolic structure on M
[Thu, Weeks2].

In [Weeks1], Weeks gave an easy way to check whether such a given geometric
ideal triangulation is canonical. Let X be one of the ideal tetrahedra, and label its
vertices {0,1,2,3}. For some fixed horotorus cross section of the cusp near vertex i ,
let R X

i denote the circumradius of the cross section and let θX
i j denote the dihedral

angle of the edge from vertex i to vertex j . For the face F of X opposite vertex i ,
define

Tilt(X ,F ) = R X
i − ∑

k 6=i
R X

k cosθX
i k (3.2)

If Y is the other tetrahedron sharing F as a face, set Tilt(F ) := Tilt(X ,F )+Tilt(Y ,F ).
With this notation, Weeks’ criterion is as follows:

3.3 Theorem [Weeks1, Prop 3.1, Thm 5.1]. A geometric ideal triangulation T of
a cusped manifold M is its canonical cellulation if and only if every face F of T

has Tilt(F ) < 0.

Geometrically, the gluing at the face F is convex, flat, or concave, depending on
whether Tilt(F ) is negative, zero, or positive.

3.4 Finding the canonical triangulation. We next explain how SnapPy attempts to
find the canonical cellulation. This gives context for our results and highlights the
necessity of a verified computation by showing what could go wrong. However, the
reader interested only in the proofs of our results can safely skip ahead to §3.5.

In [Weeks1], Weeks gave a procedure, implemented in [CDW], to transform an
arbitrary geometric triangulation T of a hyperbolic 3-manifold M into the canoni-
cal cellulation. Neglecting for the moment the numerical issues inherent in floating-
point arithmetic, his procedure is the following:

(1) If Tilt(F ) < 0 for every face of T , then T itself is the canonical triangulation by
Theorem 3.3. If Tilt(F ) ≤ 0 for every face, then T is a tetrahedral subdivision
of the canonical cellulation. In either case, the procedure terminates.

(2) If there is a face F with Tilt(F ) > 0 and with the property that performing a
2-to-3 Pachner move on F creates only positively oriented tetrahedra, then
replace T with the result of this 2-to-3 move and go back to Step 1.

(3) If there is a valence three edge E of T with a face F incident to E having
Tilt(F ) ≥ 0, then replace T with the result of the 3-to-2 Pachner move on E
and go back to Step 1.
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(4) If some face F has Tilt(F ) > 0 but no moves permitted in Steps 2 and 3 are pos-
sible, do a sequence of random Pachner moves to replace T with a different
geometric triangulation and return to Step 1.

While in practice this procedure almost always succeeds in finding the canon-
ical cellulation, it is not known to terminate with probability 1. More significantly
for us, even when it does terminate, floating-point issues may cause the cellulation
returned not to be canonical. Specifically, as the shapes are known only approx-
imately and round-off errors may accumulate, SnapPy may conclude erroneously
that Tilt(F ) ≤ 0 for all F . This is not merely a theoretical concern. For example, there
is a certain 16 tetrahedra triangulation of the exterior to the link L10a154 (included
in [DHL]) where SnapPy identifies the wrong cellulation as canonical; in this case,
the actual canonical cellulation has non-tetrahedral cells, which is the hardest case
because some tilts are zero.

3.5 Certifying hyperbolic structures. Before rigorously finding the canonical tri-
angulation, we must first certify the existence of a hyperbolic structure. For this we
used the verification scheme of [HIKMOT] which replaces floating-point computa-
tions with rigorous interval arithmetic. In interval arithmetic, a number z ∈C is par-
tially specified by giving a rectangle with vertices inQ(i ) which contains z. Because
the vertices are rational, such intervals can be exactly stored on a computer and
rigorously combined by the operations +,−, ·,/ to create other such intervals. The
cost is that the sizes of the rectangles grow with the number of operations. Given an
ideal triangulation T of a 3-manifold M , in favorable circumstances the verifica-
tion scheme of [HIKMOT] produces an interval for each tetrahedral shape, together
with a proof that the actual hyperbolic structure has shapes lying in those intervals.

3.6 Certifying canonical triangulations. We now explain how to extend the work of
[HIKMOT] to rigorously certify a triangulation T of M as canonical. The basic idea
is to use interval arithmetic when checking the hypotheses of Theorem 3.3, starting
from the guaranteed shape intervals produced by [HIKMOT]. Note that for a real
interval r , it makes sense to say that say r < 0 when both of the endpoints of r are
negative. (In contrast, there is no notion of equality for intervals since an interval
is just a stand-in for some unknown number inside it.) Thus if we compute Tilt(F )
as a real interval from the guaranteed shape intervals, we can potentially certify
that Tilt(F ) < 0 as required by Theorem 3.3. From (3.2), one sees that it suffices to
compute the quantities R X

i and cos
(
θX

i , j

)
.

We begin with the easier case where M has a single cusp. We construct a partic-
ular cusp cross section by first choosing a corner of a fixed tetrahedron and then se-
lecting a horospherical Euclidean triangle whose first side has length 1. The (known)
shape of the tetrahedron determines the other two sides of this cusp triangle, and
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from there, one can propagate the cusp cross section to adjacent tetrahedra. Since
there is only one cusp, this initial choice determines the whole cross section. The
resulting “cusp cross section” could be too large to be embedded, but it represents
an actual cross section up to a uniform dilation; since (3.2) is homogenous in the
R X

i , this has no effect on checking the hypotheses of Theorem 3.3.
The quantity R X

i is the circumradius of the corresponding cusp triangle, and the
circumradius of a triangle may be computed from the lengths of its edges using only
the operations+,−, ·,/ and

p
, all of which are supported by the interval arithmetic

scheme of [HIKMOT]; see §3.1 of that paper for details. The cosines of the dihedral
angles that appear in (3.2) can be similarly computed; if the (i , j ) edge has shape
z = a +bi , we have cos

(
θX

i , j

)= cos
(

arg(z)
)= a

/p
a2 +b2.

Thus in the 1-cusped case, we can compute tilt intervals from the initial shape
intervals and hence potentially apply Theorem 3.3 in a rigorous way; we will do
precisely this for the 22 manifolds of Theorem 4.1.

3.7 Multiple cusps. When M has multiple cusps, as in the proof of Theorem 4.4,
there is an additional subtlety. Specifically, the canonical cellulation is defined in
terms of cusp cross sections which all have the same area. As mentioned above,
interval arithmetic does not support the notion of equality. In order to describe our
solution to this issue, we must first introduce some more precise notation. Letting
[a] and [b] denote intervals, we say that [a] < [b] if a < b for all a ∈ [a] and b ∈ [b].
We extend this notation, using [C ] to denote a cusp cross section which is computed
by interval arithmetic from the guaranteed shape data as in §3.6, and we say that an
actual cusp cross section C lies in [C ] if all its Euclidean triangles have side lengths
in the corresponding interval side lengths of [C ]. In particular, if C is in [C ], then
Area(C ) is in Area([C ]), where the latter is an honest interval.

For notational simplicity, let us start with the case where M has two cusps. Let
[C0] and [C1] be cusp cross sections constructed from the shape data as above. Scale
[C1] to create [C−

1 ] and [C+
1 ] where the following holds in the interval sense:

Area
(
[C−

1 ]
)< Area

(
[C0]

)< Area
(
[C+

1 ]
)

(3.8)

If F is a face of T , we use Tilt(F, [C0], [C1]) to denote the tilt interval of F with respect
to the cusps [C0] and [C1] computed as in §3.6. The proof of Theorem 4.4 rests on
the following:

3.9 Proposition. Suppose T is a geometric triangulation of a 2-cusped mani-
fold M with guaranteed shape intervals, and suppose further that [C0], [C−

1 ], and
[C+

1 ] are cusp cross sections satisfying (3.8). If for every face F of T we have
Tilt

(
F, [C0], [C−

1 ]
) < 0 and Tilt

(
F, [C0], [C+

1 ]
) < 0, then T is the canonical triangu-

lation of M .
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Proof. Fix actual cusp cross sections C0, C+
1 , C−

1 in [C0], [C−
1 ], [C+

1 ], respectively. The
hypotheses imply Area(C−

1 ) < Area(C0) < Area(C+
1 ). Let C ′

1 be an actual cross section
for the second cusp with Area(C ′

1) = Area(C0). Thinking of cusp cross sections as
vectors whose coordinates are the circumradii of their constituent Euclidean trian-
gles, we can view C ′

1 as a convex combination

C ′
1 = (1− t ) ·C−

1 + t ·C+
1 for some t ∈ (0,1).

For any face F , the function Tilt(F,C0, · ) is linear in the remaining input, and so
since both Tilt

(
F,C0,C−

1

)
and Tilt

(
F,C0,C+

1

)
are negative by our hypotheses, we must

have Tilt
(
F,C0,C ′

1

) < 0. In particular, since Area(C0) = Area(C ′
1), Theorem 3.3 now

implies that T is canonical.

Proposition 3.9 extends easily to manifolds with three or more cusps. First fix
some [C0] for the first cusp, and then for each further cusp, choose a pair of cross
sections [C±

n ] with
Area

(
[C−

n ]
)< Area

(
[C0]

)< Area
(
[C+

n ]
)
.

If for every face F and every pattern of signs {εn} one has

Tilt
(
[C0], [C ε1

1 ], [C ε2
2 ], . . . , [C εm

m ]
)< 0,

then T must be canonical. The point is again that the actual equal area cross sec-
tions are convex combinations of cross sections in the [C±

n ], all of which have nega-
tive tilts when combined with [C0].

3.10 Remark. The subsequent paper [FGGTV] gives an elegant simplification of our
technique in the multicusped case (see their Section 3.4) and they provide an im-
plementation of their approach which works for any number of cusps.

3.11 Canonical cellulations with more complicated cells. Canonical cellulations
are generically triangulations, but it would be useful to be able to certify canonic-
ity of cellulations with more complicated cells, especially as these include some of
the most symmetric examples. It is unclear whether this can be done directly in
the context of interval arithmetic, since the lack of equality testing means we can
not be sure that some tilt is precisely zero, exactly the condition that leads to non-
tetrahedral cells. In small cases, one should be able to use exact arithmetic in a
number field to deal with this, as in [CGHN], but the interval arithmetic techniques
of [HIKMOT] can be successfully applied to much more complicated manifolds.
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Figure 4.3. A Heegaard diagram for the first manifold v3372 in Table 4.2, correspond-
ing to

〈
a,b,c

∣∣ R1 := ab−1a−2c2bc = 1, R2 := aba−1c2ba2bcb = 1
〉

. Also shown are the
slopes α = c−2a2b and β = cba2 which give lens spaces L(7,1) and L(19,7), oriented
so any positive combination of them gives an L-space.

4 Asymmetric manifolds with lens space fillings

Before proving Theorem 4.4, we warm up with the following easier and more con-
crete result, which, when combined with Theorem 2.1, also suffices to prove Theo-
rem 1.2.

4.1 Theorem. Table 4.2 lists 22 distinct 1-cusped hyperbolic 3-manifolds which
are asymmetric and have two lens space fillings of coprime order.

We provide a rigorous computer-assisted proof of Theorem 4.1 using SnapPy [CDW],
the verification scheme of [HIKMOT], and the techniques given in Section 3. These
examples were found in the census of 1-cusped hyperbolic 3-manifolds with at most
9 tetrahedra [Bur, CHW] by a brute-force search through these 59,107 manifolds.
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M #tets M(1,0) M(0,1) g vol(M) systole

v3372∗ 7 L(7,1) L(19,7) 10 6.541194 0.952884
t10397 8 L(11,2) L(14,3) 12 6.880362 0.911798
t10448 8 L(17,5) L(29,8) 15 6.891314 0.716411
t11289∗ 8 L(11,2) L(26,7) 15 7.084874 0.576033
t11581 8 L(7,1) L(31,12) 16 7.180413 0.767839
t11780 8 L(23,7) L(6,1) 12 7.232671 0.643558
t11824 8 L(34,13) L(19,4) 19 7.246332 0.480409
t12685 8 L(14,3) L(29,8) 18 7.674889 0.693829
o9∗

34328 10 L(13,2) L(34,13) 19 7.529794 0.312418
o935609 10 L(50,19) L(29,8) 27 7.631975 0.237482
o9∗

35746 10 L(17,3) L(41,12) 24 7.642118 0.238001
o936591 9 L(55,21) L(31,7) 31 7.707673 0.188586
o937290 9 L(31,12) L(19,4) 22 7.762770 0.442218
o937552 9 L(35,8) L(13,3) 18 7.781895 0.408545
o938147 9 L(29,12) L(41,11) 27 7.831770 0.392648
o938375 9 L(17,3) L(29,8) 24 7.851404 0.349858
o938845 9 L(13,2) L(18,5) 15 7.896384 0.770335
o939220 10 L(13,2) L(46,17) 28 7.930877 0.304931
o941039 10 L(13,2) L(21,8) 16 8.122543 0.916284
o941063 9 L(26,7) L(41,11) 30 8.126169 0.386869
o941329 9 L(34,9) L(49,18) 34 8.159350 0.364220
o943248 10 L(37,8) L(18,5) 23 8.444914 0.689245

Table 4.2. The 22 manifolds of Theorem 4.1. Here, “#tets” refers to the canonical
triangulation supplied in [DHL] and g is the genus of the fibration of M over the circle
(whose existence follows from Theorem 2.1) computed via the Alexander polynomial.
The lens spaces were identified using Regina [BBP+]. The manifolds marked with
a ∗ also appear in Theorem 4.4. The data is all rigorous with the exception of the
volume and systole columns, which were approximated numerically, as the methods
of [HIKMOT] have not yet been extended to those quantities. Note that none of these
manifolds are knot complements in S3, since the pair of lens space surgeries have
fundamental groups whose orders differ by more than one.
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Proof of Theorem 4.1. The 22 manifolds are specified by particular triangulations
that are included in [DHL]. For each triangulation T , we proved the following:

(a) The manifold M underlying T is hyperbolic.

We used [HIKMOT] to find intervals which are guaranteed to contain shapes
for the tetrahedra of T which give rise to an actual complete hyperbolic struc-
ture on M .

(b) The triangulation T is the canonical cellulation of M .

Doing arithmetic with the interval shapes as described in §3.6, we verified
that all the inequalities in Theorem 3.3 hold, and hence T is canonical.

(c) M is asymmetric.

We used SnapPy to find all combinatorial self-isomorphisms of T ; as there
was only the identity, asymmetry follows from Corollary 3.1.

(d) M has two lens space fillings of coprime order.

We used SnapPy to check that the (1,0) and (0,1) Dehn fillings on M (with
respect to the cusp framing specified in the triangulation file for T ) have fun-
damental groups with presentations that are obviously those of finite cyclic
groups of coprime order; the Geometrization Theorem implies that these are
lens spaces. This combinatorial step is also performed rigorously by SnapPy.
(Regina [BBP+] can go further and identify the particular lens spaces directly,
without appealing to geometrization; this data is included in Table 4.2.)

To finish off Theorem 4.1, it remained to show that the examples are distinct. For
this, we checked that no two of the triangulations were combinatorially isomorphic.
By (b), this implies the 22 manifolds are not isometric and hence not homeomor-
phic. Alternatively, this is proved in [Bur] by different methods.

Complete source code for this proof is available at [DHL]. As a precaution, two
disjoint subsets of the authors wrote independent implementations of step (b), and
the entire proof was executed from a single script. Additionally, our code is robust
enough to run on all 59,107 one-cusped census manifolds in [Bur]; excluding the 64
cases where SnapPy believes there are canonical cells which are not tetrahedra, we
were able to certify the canonical triangulations for all of these manifolds.

We next extend the phenomena exhibited in Theorem 4.1 to an infinite family of
examples; note that our conventions for Dehn filling are specified in Figure 1.4.
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4.4 Theorem. There exist infinitely many 1-cusped hyperbolic 3-manifolds
which are asymmetric and have two lens space fillings of coprime order. Specif-
ically, if N is the exterior of the link in Figure 1.4, then for all large k ∈ Z, the
(6k ±1,k) Dehn filling on either component of N yields such a manifold.

Proof. Let Nk denote the (6k +1,k) Dehn filling on the second cusp of N ; we focus
on this case first for notational simplicity, leaving the (6k−1,k) Dehn filling for later.
The theorem in this case follows immediately from the next two lemmas.

4.5 Lemma. For all k ∈Zwith |k| sufficiently large, the manifold Nk is hyperbolic
and asymmetric.

4.6 Lemma. For all k ∈Z, the (1,0) and (4,1) Dehn fillings on the remaining cusp
of Nk are lens spaces of coprime orders |6k +1| and |15k +4|, respectively.

Proof of Lemma 4.5. Let T be the particular triangulation of N included in [DHL].
Using [HIKMOT] and Proposition 3.9, we verified that T is in fact the canonical
triangulation of N . The triangulation T has only two combinatorial isomorphisms:
the identity and one that interchanges the two cusps. Hence by Corollary 3.1 the
only isometry of N that preserves the each cusp is the identity. The lemma now
follows from the argument used to prove Lemma 2.2.

4.7 Remark. The referee kindly pointed out that the link L in Figure 1.4 is the Mon-
tesinos link M(0; (5,3), (3,−2), (5,1)), and hence its symmetry group π0

(
Diff(S3,L)

)
can be computed using Boileau and Zimmermann [BZ]. Unlike the case of knots
[GL], a symmetry of a link exterior need not send meridians to meridians; for ex-
ample, the symmetry group of the (−2,3,8)-pretzel link is Z/2Z, but the symme-
try group of its exterior has order 8. While the proof of Lemma 4.5 given above
requires that we know the full symmetry group of the exterior N , rather than just
π0

(
Diff(S3,L)

)
, by working harder one can prove Lemma 4.5 from the results in [BZ]

without reference to a canonical triangulation of N . We now sketch this alternative
argument.

Using [BZ], one computes that the symmetry group of the link L is Z/2Z where
the generator interchanges the two components. If infinitely many Nk admit a non-
trivial symmetry, then since the symmetry group of N is finite, there is an infinite
set of indices ki where said symmetry of Nki is induced by a fixed symmetry f of N .
We will show that f is a symmetry of the underlying link L and consequently f must
be the identity. Let C1 and C2 be torus cross-sections for the two cusps of N . For
each i , the symmetry f preserves the unoriented isotopy class of the Dehn filling
curve γi ⊂ C2 used to form Nki . Again passing to a subsequence, we can assume
that f either preserves the oriented isotopy class of all γi or reverses the orienta-
tion on all of them. In the former case, it follows that f restricted to C2 is isotopic
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to the identity; in the latter, it must be isotopic to the elliptic involution. Since the
two components of L have nonzero linking number, the maps H1(Ci ;Z) → H1(N ;Z)
are both injective; it follows that the action of f on C2 determines the action of f
on H1(C1;Z). Consequently, in either case, the map f must preserve the unoriented
isotopy classes of the meridians which record L in both C1 and C2, and hence comes
from a symmetry of (S3,L) as claimed.

Proof of Lemma 4.6. It is clear from Figure 1.4 that both link components are un-
knotted; the (1,0) filling on Nk is thus a lens space of order |6k +1|.

Turning now to the other filling, let P denote the (4,1) filling of the first cusp of
N . The key idea is that P is Seifert fibered over the disc with two exceptional fibers
of orders 3 and 5, and hence has infinitely many lens space Dehn fillings; we chose
the fillings defining the Nk to be these lens space slopes. If

〈
µ,λ

〉
is a meridian-

longitude basis (with respect to the standard link framing) for π1(∂P ), SnapPy easily
computes that

π1(P ) = 〈
a,b

∣∣ b3a5 = 1
〉

with µ= b2a2 and β :=µ6λ= b3 = a−5.

In particular, the (6k + 1,k) filling, which is along the slope µβk , has fundamen-
tal group

〈
a,b

∣∣ b3a5 = 1, µβk = b2a2−5k = 1
〉

. Replacing the second relator by its
product on the left with the inverse of the first relator yields the following presenta-
tion: 〈

a,b
∣∣ b3a5 = 1, a−(5k+3) = b

〉 = 〈
a

∣∣ a15k+4 = 1
〉

Thus the (4,1) filling on Nk is a lens space whose first homology has order |15k +4|.
We conclude the proof for the (6k +1,k) filling by noting that p1 = 6k +1 and p2 =
15k +4 are coprime, since −(5k +3)p1 + (2k +1)p2 = 1 for any k.

The (6k−1,k) case differs only in that the lens spaces have order p ′
1 = 6k−1 and∣∣p ′

2

∣∣, where p ′
2 = 15k −4. These are coprime since −(5k −3)p ′

1 + (2k −1)p ′
2 = 1.
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