254 research outputs found

    Hybrid MPPT Control: P&O and Neural Network for Wind Energy Conversion System

    Get PDF
    In the field of wind turbine performance optimization, many techniques are employed to track the maximum power point (MPPT), one of the most commonly used MPPT algorithms is the perturb and observe technique (PO) because of its ease of implementation. However, the main disadvantage of this method is the lack of accuracy due to fluctuations around the maximum power point. In contrast, MPPT control employing neural networks proved to be an effective solution, in terms of accuracy. The contribution of this work is to propose a hybrid maximum power point tracking control using two types of MPPT control: neural network control (NNC) and the perturbation and observe method (PO), thus the PO method can offer better performance. Furthermore, this study aims to provide a comparison of the hybrid method with each algorithm and NNC. At the resulting duty cycle of the 2 methods, we applied the combination operation. A DC-DC boost converter is subjected to the hybrid MPPT control.  This converter is part of a wind energy conversion system employing a permanent magnet synchronous generator (PMSG). The chain is modeled using MATLAB/Simulink software. The effectiveness of the controller is tested at varying wind speeds. In terms of the Integral time absolute error (ITAE), using the PO technique, the ITAE is 9.72. But, if we apply the suggested technique, it is smaller at 4.55. The corresponding simulation results show that the proposed hybrid method performs best compared to the PO method. Simulation results ensure the performance of the proposed hybrid MPPT control.

    Nonlinear control and observation of full-variable speed wind turbine systems.

    Get PDF
    With increasing concern for the environmental effects of power generation from fossil fuels, wind energy is a competitive source for electrical power with higher efficiency than other clean sources. However, the nature of this power source makes controlling wind turbines difficult. The variability of wind as a source either requires highly accurate measurement equipment or sophisticated mathematical alternatives. In addition to the unknown quantities of the weather itself, the efficiency of power capture at the turbine blades is highly nonlinear in nature and difficult to ascertain. The ability of either determine these troublesome quantities, or control the system despite ignorance of them, greatly increases the overall efficiency of power capture. To this end, a series of nonlinear controllers and observers have been developed for wind turbine systems

    Affine projection algorithm based adaptive control scheme for operation of variable-speed wind generator

    Get PDF
    This study presents a novel adaptive control scheme for variable-speed wind turbine (VSWT) driven permanent magnet synchronous generator (PMSG) to ensure its operation under different operating conditions. The adaptive control scheme is based on the affine projection algorithm (APA) which provides a faster convergence and less computational complexity than the least-mean-square algorithm. The proposed adaptive controller is used to control both the generator-side converter and the grid-side inverter without giving additional tuning efforts. Each vector control scheme for the converter/inverter has four APA-based adaptive proportional-integral (PI) controllers. Detailed modelling and the control strategies of the system under study are demonstrated. Real wind speed data extracted from Hokkaido island, Japan is used in this study. The dynamic characteristics of a grid-connected VSWT-PMSG are investigated in details to ensure the proposed controller operation under different operating conditions. The effectiveness of the proposed adaptive controller is compared with that obtained using optimised PI controllers by Taguchi method. The validity of the adaptive vector control scheme is verified by the simulation results which are performed using PSCAD/EMTDC environment

    Comparative Study of P&O and Fuzzy MPPT Controllers and Their Optimization Using PSO and GA to Improve Wind Energy System

    Get PDF
    Many academics have recently focused on wind energy installations. WECS (wind energy conversion system) is a renewable energy source that has seen significant development in recent years. Furthermore, compared to the use of power grid supply, the use of the WECS in the water pumping field is a cost-free option (economically). The purpose of this study is to demonstrate a wind-powered pumping mechanism. To obtain the best option, it considers and contrasts four distinct approaches. This research aims to improve the system\u27s performance and the quality of the generated power. The objective of the control of WECS with a permanent magnet synchronous generator (PMSG) is to carefully maximize power generation. Finally, this research employed the fuzzy logic control (FLC) and particle swarm optimization (PSO) algorithms improved using a genetic algorithm (GA). The proposed system\u27s performance was tested using the generated output voltage, current, and power waveforms, as well as the intermediate circuit voltage waveform and generator speed. The provided data show that the control technique used in this study was effective

    Comparison between unipolar and bipolar single phase grid-connected inverters for PV applications

    Get PDF
    An inverter is essential for the interfacing of photovoltaic panels with the AC network. There are many possible inverter topologies and inverter switching schemes and each one will have its own relative advantages and disadvantages. Efficiency and output current distortion are two important factors governing the choice of inverter system. In this paper, it is argued that current controlled inverters offer significant advantages from the point of view of minimisation of current distortion. Two inverter switching strategies are explored in detail. These are the unipolar current controlled inverter and the bipolar current controlled inverter. With respect to low frequency distortion, previously published works provide theoretical arguments in favour of bipolar switching. On the other hand it has also been argued that the unipolar switched inverter offers reduced switching losses and generates less EMI. On efficiency grounds, it appears that the unipolar switched inverter has an advantage. However, experimental results presented in this paper show that the level of low frequency current distortion in the unipolar switched inverter is such that it can only comply with Australian Standard 4777.2 above a minimum output current. On the other hand it is shown that at the same current levels bipolar switching results in reduced low frequency harmonics

    Comparison between unipolar and bipolar single phase grid-connected inverters for PV applications

    Get PDF
    An inverter is essential for the interfacing of photovoltaic panels with the AC network. There are many possible inverter topologies and inverter switching schemes and each one will have its own relative advantages and disadvantages. Efficiency and output current distortion are two important factors governing the choice of inverter system. In this paper, it is argued that current controlled inverters offer significant advantages from the point of view of minimisation of current distortion. Two inverter switching strategies are explored in detail. These are the unipolar current controlled inverter and the bipolar current controlled inverter. With respect to low frequency distortion, previously published works provide theoretical arguments in favour of bipolar switching. On the other hand it has also been argued that the unipolar switched inverter offers reduced switching losses and generates less EMI. On efficiency grounds, it appears that the unipolar switched inverter has an advantage. However, experimental results presented in this paper show that the level of low frequency current distortion in the unipolar switched inverter is such that it can only comply with Australian Standard 4777.2 above a minimum output current. On the other hand it is shown that at the same current levels bipolar switching results in reduced low frequency harmonics

    Adaptive Neural Network-Based Control of a Hybrid AC/DC Microgrid

    Get PDF
    In this paper, the behavior of a grid-connected hybrid ac/dc microgrid has been investigated. Different renewable energy sources - photovoltaics modules and a wind turbine generator - have been considered together with a solid oxide fuel cell and a battery energy storage system. The main contribution of this paper is the design and the validation of an innovative online-trained artificial neural network-based control system for a hybrid microgrid. Adaptive neural networks are used to track the maximum power point of renewable energy generators and to control the power exchanged between the front-end converter and the electrical grid. Moreover, a fuzzy logic-based power management system is proposed in order to minimize the energy purchased from the electrical grid. The operation of the hybrid microgrid has been tested in the MATLAB/Simulink environment under different operating conditions. The obtained results demonstrate the effectiveness, the high robustness and the self-adaptation ability of the proposed control system

    Passivity - Based Control and Stability Analysis for Hydro-Solar Power Systems

    Get PDF
    Los sistemas de energía modernos se están transformando debido a la inclusión de renovables no convencionales fuentes de energía como la generación eólica y fotovoltaica. A pesar de que estas fuentes de energía son buenas alternativas para el aprovechamiento sostenible de la energía, afectan el funcionamiento y la estabilidad del sistema de energía, debido a su naturaleza inherentemente estocástica y dependencia de las condiciones climáticas. Además, los parques solares y eólicos tienen una capacidad de inercia reducida que debe ser compensada por grandes generadores síncronos en sistemas hidro térmicos convencionales, o por almacenamiento de energía dispositivos. En este contexto, la interacción dinámica entre fuentes convencionales y renovables debe ser estudiado en detalle. Para 2030, el Gobierno de Colombia proyecta que el poder colombiano El sistema integrará en su matriz energética al menos 1,2 GW de generación solar fotovoltaica. Por esta razón, es necesario diseñar controladores robustos que mejoren la estabilidad en los sistemas de energía. Con alta penetración de generación fotovoltaica e hidroeléctrica. Esta disertación estudia nuevas alternativas para mejorar el sistema de potencia de respuesta dinámica durante y después de grandes perturbaciones usando pasividad control basado. Esto se debe a que los componentes del sistema de alimentación son inherentemente pasivos y permiten formulaciones hamiltonianas, explotando así las propiedades de pasividad de sistemas eléctricos. Las principales contribuciones de esta disertación son: una pasividad descentralizada basada control de los sistemas de control de turbinas hidráulicas para sistemas de energía de múltiples máquinas para estabilizar el rotor acelerar y regular el voltaje terminal de cada sistema de control de turbinas hidráulicas en el sistema como, así como un control basado en PI pasividad para las plantas solares fotovoltaicas

    Nonlinear and sampled data control with application to power systems

    Get PDF
    Sampled data systems have come into practical importance for a variety of reasons. The earliest of these had primarily to do with economy of design. A more recent surge of interest was due to increase utilization of digital computers as controllers in feedback systems. This thesis contributes some control design for a class of nonlinear system exhibition linear output. The solution of several nonlinear control problems required the cancellation of some intrinsic dynamics (so-called zero dynamics) of the plant under feedback. It results that the so-dened control will ensure stability in closed-loop if and only if the dynamics to cancel are stable. What if those dynamics are unstable? Classical control strategies through inversion might solve the problem while making the closed loop system unstable. This thesis aims to introduce a solution for such a problem. The main idea behind our work is to stabilize the nonminimum phase system in continuous- time and undersampling using zero dynamics concept. The overall work in this thesis is divided into two parts. In Part I, we introduce a feedback control designs for the input-output stabilization and the Disturbance Decoupling problems of Single Input Single Output nonlinear systems. A case study is presented, to illustrate an engineering application of results. Part II illustrates the results obtained based on the Articial Intelligent Systems in power system machines. We note that even though the use of some of the AI techniques such as Fuzzy Logic and Neural Network does not require the computation of the model of the application, but it will still suer from some drawbacks especially regarding the implementation in practical applications. An alternative used approach is to use control techniques such as PID in the approximated linear model. This design is very well known to be used, but it does not take into account the non-linearity of the model. In fact, it seems that control design that is based on nonlinear control provide better performances
    corecore