315 research outputs found

    Automatic translation of formal data specifications to voice data-input applications.

    Get PDF
    This thesis introduces a complete solution for automatic translation of formal data specifications to voice data-input applications. The objective of the research is to automatically generate applications for inputting data through speech from specifications of the structure of the data. The formal data specifications are XML DTDs. A new formalization called Grammar-DTD (G-DTD) is introduced as an extended DTD that contains grammars to describe valid values of the DTD elements and attributes. G-DTDs facilitate the automatic generation of Voice XML applications that correspond to the original DTD structure. The development of the automatic application-generator included identifying constraints on the G-DTD to ensure a feasible translation, using predicate calculus to build a knowledge base of inference rules that describes the mapping procedure, and writing an algorithm for the automatic translation based on the inference rules.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .H355. Source: Masters Abstracts International, Volume: 45-01, page: 0354. Thesis (M.Sc.)--University of Windsor (Canada), 2006

    ACII 2009: Affective Computing and Intelligent Interaction. Proceedings of the Doctoral Consortium 2009

    Get PDF

    A practical guide to conversation research: how to study what people say to each other

    Get PDF
    Conversation—a verbal interaction between two or more people—is a complex, pervasive, and consequential human behavior. Conversations have been studied across many academic disciplines. However, advances in recording and analysis techniques over the last decade have allowed researchers to more directly and precisely examine conversations in natural contexts and at a larger scale than ever before, and these advances open new paths to understand humanity and the social world. Existing reviews of text analysis and conversation research have focused on text generated by a single author (e.g., product reviews, news articles, and public speeches) and thus leave open questions about the unique challenges presented by interactive conversation data (i.e., dialogue). In this article, we suggest approaches to overcome common challenges in the workflow of conversation science, including recording and transcribing conversations, structuring data (to merge turn-level and speaker-level data sets), extracting and aggregating linguistic features, estimating effects, and sharing data. This practical guide is meant to shed light on current best practices and empower more researchers to study conversations more directly—to expand the community of conversation scholars and contribute to a greater cumulative scientific understanding of the social world

    Robust Dialog Management Through A Context-centric Architecture

    Get PDF
    This dissertation presents and evaluates a method of managing spoken dialog interactions with a robust attention to fulfilling the human user’s goals in the presence of speech recognition limitations. Assistive speech-based embodied conversation agents are computer-based entities that interact with humans to help accomplish a certain task or communicate information via spoken input and output. A challenging aspect of this task involves open dialog, where the user is free to converse in an unstructured manner. With this style of input, the machine’s ability to communicate may be hindered by poor reception of utterances, caused by a user’s inadequate command of a language and/or faults in the speech recognition facilities. Since a speech-based input is emphasized, this endeavor involves the fundamental issues associated with natural language processing, automatic speech recognition and dialog system design. Driven by ContextBased Reasoning, the presented dialog manager features a discourse model that implements mixed-initiative conversation with a focus on the user’s assistive needs. The discourse behavior must maintain a sense of generality, where the assistive nature of the system remains constant regardless of its knowledge corpus. The dialog manager was encapsulated into a speech-based embodied conversation agent platform for prototyping and testing purposes. A battery of user trials was performed on this agent to evaluate its performance as a robust, domain-independent, speech-based interaction entity capable of satisfying the needs of its users

    Confirmation Report: Modelling Interlocutor Confusion in Situated Human Robot Interaction

    Get PDF
    Human-Robot Interaction (HRI) is an important but challenging field focused on improving the interaction between humans and robots such to make the interaction more intelligent and effective. However, building a natural conversational HRI is an interdisciplinary challenge for scholars, engineers, and designers. It is generally assumed that the pinnacle of human- robot interaction will be having fluid naturalistic conversational interaction that in important ways mimics that of how humans interact with each other. This of course is challenging at a number of levels, and in particular there are considerable difficulties when it comes to naturally monitoring and responding to the user’s mental state. On the topic of mental states, one field that has received little attention to date is moni- toring the user for possible confusion states. Confusion is a non-trivial mental state which can be seen as having at least two substates. There two confusion states can be thought of as being associated with either negative or positive emotions. In the former, when people are productively confused, they have a passion to solve any current difficulties. Meanwhile, people who are in unproductive confusion may lose their engagement and motivation to overcome those difficulties, which in turn may even lead them to drop the current conversation. While there has been some research on confusion monitoring and detection, it has been limited with the most focused on evaluating confusion states in online learning tasks. The central hypothesis of this research is that the monitoring and detection of confusion states in users is essential to fluid task-centric HRI and that it should be possible to detect such confusion and adjust policies to mitigate the confusion in users. In this report, I expand on this hypothesis and set out several research questions. I also provide a comprehensive literature review before outlining work done to date towards my research hypothesis, I also set out plans for future experimental work

    From Verbs to Tasks: An Integrated Account of Learning Tasks from Situated Interactive Instruction.

    Full text link
    Intelligent collaborative agents are becoming common in the human society. From virtual assistants such as Siri and Google Now to assistive robots, they contribute to human activities in a variety of ways. As they become more pervasive, the challenge of customizing them to a variety of environments and tasks becomes critical. It is infeasible for engineers to program them for each individual use. Our research aims at building interactive robots and agents that adapt to new environments autonomously by interacting with human users using natural modalities. This dissertation studies the problem of learning novel tasks from human-agent dialog. We propose a novel approach for interactive task learning, situated interactive instruction (SII), and investigate approaches to three computational challenges that arise in designing SII agents: situated comprehension, mixed-initiative interaction, and interactive task learning. We propose a novel mixed-modality grounded representation for task verbs which encompasses their lexical, semantic, and task-oriented aspects. This representation is useful in situated comprehension and can be learned through human-agent interactions. We introduce the Indexical Model of comprehension that can exploit extra-linguistic contexts for resolving semantic ambiguities in situated comprehension of task commands. The Indexical model is integrated with a mixed-initiative interaction model that facilitates a flexible task-oriented human-agent dialog. This dialog serves as the basis of interactive task learning. We propose an interactive variation of explanation-based learning that can acquire the proposed representation. We demonstrate that our learning paradigm is efficient, can transfer knowledge between structurally similar tasks, integrates agent-driven exploration with instructional learning, and can acquire several tasks. The methods proposed in this thesis are integrated in Rosie - a generally instructable agent developed in the Soar cognitive architecture and embodied on a table-top robot.PhDComputer Science and EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111573/1/shiwali_1.pd
    • …
    corecore