1,963 research outputs found

    A modified broadcast strategy for distributed signal estimation in a wireless sensor network with a tree topology

    Get PDF
    We envisage a wireless sensor network (WSN) where each node is tasked with estimating a set of node-specific desired signals that has been corrupted by additive noise. The nodes accomplish this estimation by means of the distributed adaptive node-specific estimation (DANSE) algorithm in a tree topology (T-DANSE). In this paper, we consider a network where there is at least one node with a large (virtually infinite) energy budget, which we select as the root node. We propose a modification to the signal flow of the T-DANSE algorithm where instead of each node having two-way signal communication, there is a single signal flow toward the root node of the tree topology which then broadcasts a single signal to all other nodes. We demonstrate that the modified algorithm is equivalent to the original T-DANSE algorithm in terms of the signal estimation performance, shifts a large part of the communication burden toward the high-power root node to reduce the energy consumption in the low-power nodes and reduces the input-output delay

    D-SLATS: Distributed Simultaneous Localization and Time Synchronization

    Full text link
    Through the last decade, we have witnessed a surge of Internet of Things (IoT) devices, and with that a greater need to choreograph their actions across both time and space. Although these two problems, namely time synchronization and localization, share many aspects in common, they are traditionally treated separately or combined on centralized approaches that results in an ineffcient use of resources, or in solutions that are not scalable in terms of the number of IoT devices. Therefore, we propose D-SLATS, a framework comprised of three different and independent algorithms to jointly solve time synchronization and localization problems in a distributed fashion. The First two algorithms are based mainly on the distributed Extended Kalman Filter (EKF) whereas the third one uses optimization techniques. No fusion center is required, and the devices only communicate with their neighbors. The proposed methods are evaluated on custom Ultra-Wideband communication Testbed and a quadrotor, representing a network of both static and mobile nodes. Our algorithms achieve up to three microseconds time synchronization accuracy and 30 cm localization error

    Communication Efficiency in Information Gathering through Dynamic Information Flow

    Get PDF
    This thesis addresses the problem of how to improve the performance of multi-robot information gathering tasks by actively controlling the rate of communication between robots. Examples of such tasks include cooperative tracking and cooperative environmental monitoring. Communication is essential in such systems for both decentralised data fusion and decision making, but wireless networks impose capacity constraints that are frequently overlooked. While existing research has focussed on improving available communication throughput, the aim in this thesis is to develop algorithms that make more efficient use of the available communication capacity. Since information may be shared at various levels of abstraction, another challenge is the decision of where information should be processed based on limits of the computational resources available. Therefore, the flow of information needs to be controlled based on the trade-off between communication limits, computation limits and information value. In this thesis, we approach the trade-off by introducing the dynamic information flow (DIF) problem. We suggest variants of DIF that either consider data fusion communication independently or both data fusion and decision making communication simultaneously. For the data fusion case, we propose efficient decentralised solutions that dynamically adjust the flow of information. For the decision making case, we present an algorithm for communication efficiency based on local LQ approximations of information gathering problems. The algorithm is then integrated with our solution for the data fusion case to produce a complete communication efficiency solution for information gathering. We analyse our suggested algorithms and present important performance guarantees. The algorithms are validated in a custom-designed decentralised simulation framework and through field-robotic experimental demonstrations

    Distributed estimation over a low-cost sensor network: a review of state-of-the-art

    Get PDF
    Proliferation of low-cost, lightweight, and power efficient sensors and advances in networked systems enable the employment of multiple sensors. Distributed estimation provides a scalable and fault-robust fusion framework with a peer-to-peer communication architecture. For this reason, there seems to be a real need for a critical review of existing and, more importantly, recent advances in the domain of distributed estimation over a low-cost sensor network. This paper presents a comprehensive review of the state-of-the-art solutions in this research area, exploring their characteristics, advantages, and challenging issues. Additionally, several open problems and future avenues of research are highlighted
    • …
    corecore