7 research outputs found

    Spatially-constrained clustering of ecological networks

    Full text link
    Spatial ecological networks are widely used to model interactions between georeferenced biological entities (e.g., populations or communities). The analysis of such data often leads to a two-step approach where groups containing similar biological entities are firstly identified and the spatial information is used afterwards to improve the ecological interpretation. We develop an integrative approach to retrieve groups of nodes that are geographically close and ecologically similar. Our model-based spatially-constrained method embeds the geographical information within a regularization framework by adding some constraints to the maximum likelihood estimation of parameters. A simulation study and the analysis of real data demonstrate that our approach is able to detect complex spatial patterns that are ecologically meaningful. The model-based framework allows us to consider external information (e.g., geographic proximities, covariates) in the analysis of ecological networks and appears to be an appealing alternative to consider such data

    ClustGeo: an R package for hierarchical clustering with spatial constraints

    Get PDF
    In this paper, we propose a Ward-like hierarchical clustering algorithm including spatial/geographical constraints. Two dissimilarity matrices D0D_0 and D1D_1 are inputted, along with a mixing parameter α∈[0,1]\alpha \in [0,1]. The dissimilarities can be non-Euclidean and the weights of the observations can be non-uniform. The first matrix gives the dissimilarities in the "feature space" and the second matrix gives the dissimilarities in the "constraint space". The criterion minimized at each stage is a convex combination of the homogeneity criterion calculated with D0D_0 and the homogeneity criterion calculated with D1D_1. The idea is then to determine a value of α\alpha which increases the spatial contiguity without deteriorating too much the quality of the solution based on the variables of interest i.e. those of the feature space. This procedure is illustrated on a real dataset using the R package ClustGeo

    Image Segmentation by Fuzzy C-Means Clustering Algorithm with a Novel Penalty Term

    Get PDF
    To overcome the noise sensitiveness of conventional fuzzy c-means (FCM) clustering algorithm, a novel extended FCM algorithm for image segmentation is presented in this paper. The algorithm is developed by modifying the objective function of the standard FCM algorithm with a penalty term that takes into account the influence of the neighboring pixels on the centre pixels. The penalty term acts as a regularizer in this algorithm, which is inspired from the neighborhood expectation maximization algorithm and is modified in order to satisfy the criterion of the FCM algorithm. The performance of our algorithm is discussed and compared to those of many derivatives of FCM algorithm. Experimental results on segmentation of synthetic and real images demonstrate that the proposed algorithm is effective and robust

    Spatial Fuzzy clustering with simultaneous estimation of Markov random field parameters and class

    Get PDF
    Projecte final de carrera fet en col.laboració amb Medical Imaging Research Center. Illinois Institute of Technolog

    Spatio-temporal Clustering for Non-Recurrent Traffic Congestion Detection on Urban Road Networks

    Get PDF
    Non-Recurrent Congestion events (NRCs) frustrate commuters, companies and traffic operators because they cause unexpected delays. Most existing studies consider NRCs to be an outcome of incidents on motorways. The differences between motorways and urban road networks, and the fact that incidents are not the only cause of NRCs, limit the usefulness of existing automatic incident detection methods for identifying NRCs on an urban road network. This thesis contributes to the literature by developing an NRC detection methodology to support the accurate detection of NRCs on large urban road networks. To achieve this, substantially high Link Journey Time estimates (LJTs) on adjacent links that occur at the same time are clustered. Substantially high LJTs are defined in two different ways: (i) those LJTs that are greater than a threshold, (ii) those LJTs that belong to a statistically significant Space-Time Region (STR). These two different ways of defining the term ‘substantially high LJT’ lead to different NRC detection methods. To evaluate these methods, two novel criteria are proposed. The first criterion, high-confidence episodes, assesses to what extent substantially high LJTs that last for a minimum duration are detected. The second criterion, the Localisation Index, assesses to what extent detected NRCs could be related to incidents. The proposed NRC detection methodology is tested for London’s urban road network, which consists of 424 links. Different levels of travel demand are analysed in order to establish a complete understanding of the developed methodology. Optimum parameter settings of the two proposed NRC detection methods are determined by sensitivity analysis. Related to the first method, LJTs that are at least 40% higher than their expected values are found to maintain the best balance between the proposed evaluation criteria for detecting NRCs. Related to the second method, it is found that constructing STRs by considering temporal adjacencies rather than spatial adjacencies improves the performance of the method. These findings are applied in real life situations to demonstrate the advantages and limitations of the proposed NRC detection methods. Traffic operation centres could readily start using the proposed NRC detection methodology. In this way, traffic operators could be able to quantify the impact of incidents and develop effective NRC reduction strategies
    corecore